IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008941.html
   My bibliography  Save this article

Effects of incomplete inter-hospital network data on the assessment of transmission dynamics of hospital-acquired infections

Author

Listed:
  • Hanjue Xia
  • Johannes Horn
  • Monika J Piotrowska
  • Konrad Sakowski
  • André Karch
  • Hannan Tahir
  • Mirjam Kretzschmar
  • Rafael Mikolajczyk

Abstract

In the year 2020, there were 105 different statutory insurance companies in Germany with heterogeneous regional coverage. Obtaining data from all insurance companies is challenging, so that it is likely that projects will have to rely on data not covering the whole population. Consequently, the study of epidemic spread in hospital referral networks using data-driven models may be biased. We studied this bias using data from three German regional insurance companies covering four federal states: AOK (historically “general local health insurance company”, but currently only the abbreviation is used) Lower Saxony (in Federal State of Lower Saxony), AOK Bavaria (in Bavaria), and AOK PLUS (in Thuringia and Saxony). To understand how incomplete data influence network characteristics and related epidemic simulations, we created sampled datasets by randomly dropping a proportion of patients from the full datasets and replacing them with random copies of the remaining patients to obtain scale-up datasets to the original size. For the sampled and scale-up datasets, we calculated several commonly used network measures, and compared them to those derived from the original data. We found that the network measures (degree, strength and closeness) were rather sensitive to incompleteness. Infection prevalence as an outcome from the applied susceptible-infectious-susceptible (SIS) model was fairly robust against incompleteness. At incompleteness levels as high as 90% of the original datasets the prevalence estimation bias was below 5% in scale-up datasets. Consequently, a coverage as low as 10% of the local population of the federal state population was sufficient to maintain the relative bias in prevalence below 10% for a wide range of transmission parameters as encountered in clinical settings. Our findings are reassuring that despite incomplete coverage of the population, German health insurance data can be used to study effects of patient traffic between institutions on the spread of pathogens within healthcare networks.Author summary: Patterns of patients’ transfer between different hospitals contribute crucially to the risk of hospital-acquired infections (HAIs) in the health care system. To quantify this risk, network models can be applied. The estimated risk can be inaccurate in the case of incomplete data on hospital admissions, which can be a consequence of the multiplicity of insurance companies as it is the case in Germany. To develop a better understanding of how incompleteness of data affects network measures and the simulated spread of HAI, we compared those measures derived from sampled, scale-up and original data, based on hospitalization data from three AOK insurance companies. We found that common network measures were affected by incompleteness, but the simulated prevalence as a measure of epidemic spread in the network was robust over a large range of incompleteness proportions. Epidemics and the transition of the infectious diseases may be modelled on hospital data with a coverage as low as 10% of the local population, whilst maintaining accuracy to within 10% of the true population prevalence.

Suggested Citation

  • Hanjue Xia & Johannes Horn & Monika J Piotrowska & Konrad Sakowski & André Karch & Hannan Tahir & Mirjam Kretzschmar & Rafael Mikolajczyk, 2021. "Effects of incomplete inter-hospital network data on the assessment of transmission dynamics of hospital-acquired infections," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-18, May.
  • Handle: RePEc:plo:pcbi00:1008941
    DOI: 10.1371/journal.pcbi.1008941
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008941
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008941&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008941?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lee, B.Y. & McGlone, S.M. & Song, Y. & Avery, T.R. & Eubank, S. & Chang, C.C. & Bailey, R.R. & Wagener, D.K. & Burke, D.S. & Platt, R. & Huang, S.S., 2011. "Social network analysis of patient sharing among hospitals in Orange County, California," American Journal of Public Health, American Public Health Association, vol. 101(4), pages 707-713.
    2. Mathieu Génois & Christian L. Vestergaard & Ciro Cattuto & Alain Barrat, 2015. "Compensating for population sampling in simulations of epidemic spread on temporal contact networks," Nature Communications, Nature, vol. 6(1), pages 1-13, December.
    3. Monika J Piotrowska & Konrad Sakowski & André Karch & Hannan Tahir & Johannes Horn & Mirjam E Kretzschmar & Rafael T Mikolajczyk, 2020. "Modelling pathogen spread in a healthcare network: Indirect patient movements," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-22, November.
    4. Ciro Cattuto & Wouter Van den Broeck & Alain Barrat & Vittoria Colizza & Jean-François Pinton & Alessandro Vespignani, 2010. "Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks," PLOS ONE, Public Library of Science, vol. 5(7), pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory, Steve, 2012. "Ordered community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2752-2763.
    2. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    3. Hilal Atasoy & Pei-yu Chen & Kartik Ganju, 2018. "The Spillover Effects of Health IT Investments on Regional Healthcare Costs," Management Science, INFORMS, vol. 64(6), pages 2515-2534, June.
    4. Kobayashi, Teruyoshi & Takaguchi, Taro, 2018. "Identifying relationship lending in the interbank market: A network approach," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 20-36.
    5. Fabio Caccioli & Paolo Barucca & Teruyoshi Kobayashi, 2018. "Network models of financial systemic risk: a review," Journal of Computational Social Science, Springer, vol. 1(1), pages 81-114, January.
    6. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    7. Mascia, Daniele & Di Vincenzo, Fausto & Cicchetti, Americo, 2012. "Dynamic analysis of interhospital collaboration and competition: Empirical evidence from an Italian regional health system," Health Policy, Elsevier, vol. 105(2), pages 273-281.
    8. Eugenio Valdano & Chiara Poletto & Armando Giovannini & Diana Palma & Lara Savini & Vittoria Colizza, 2015. "Predicting Epidemic Risk from Past Temporal Contact Data," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-19, March.
    9. Valentina Evangelista & Fausto Di Vincenzo, 2014. "Dinamiche di collaborazione interospedaliera: un?analisi longitudinale nella regione Abruzzo," MECOSAN, FrancoAngeli Editore, vol. 2014(92), pages 9-26.
    10. Ghahramani, Ali & Pantelic, Jovan & Lindberg, Casey & Mehl, Matthias & Srinivasan, Karthik & Gilligan, Brian & Arens, Edward, 2018. "Learning occupants’ workplace interactions from wearable and stationary ambient sensing systems," Applied Energy, Elsevier, vol. 230(C), pages 42-51.
    11. Westra, Daan & Makai, Peter & Kemp, Ron, 2024. "Return to sender: Unraveling the role of structural and social network ties in patient sharing networks," Social Science & Medicine, Elsevier, vol. 340(C).
    12. Mark Kibanov & Raphael H. Heiberger & Simone Rödder & Martin Atzmueller & Gerd Stumme, 2019. "Social studies of scholarly life with sensor-based ethnographic observations," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1387-1428, June.
    13. Masoud Shakiba & Azam Zavvari & Nader Aleebrahim & Mandeep Jit Singh, 2016. "Evaluating the academic trend of RFID technology based on SCI and SSCI publications from 2001 to 2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 591-614, October.
    14. Laura Ozella & Francesco Gesualdo & Michele Tizzoni & Caterina Rizzo & Elisabetta Pandolfi & Ilaria Campagna & Alberto Eugenio Tozzi & Ciro Cattuto, 2018. "Close encounters between infants and household members measured through wearable proximity sensors," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-16, June.
    15. Massimo Riccaboni & Anna Romiti & Gianna Giudicati, 2011. "Co-experience Network Dynamics: Lessons from the Dance Floor," DISA Working Papers 2011/02, Department of Computer and Management Sciences, University of Trento, Italy, revised 28 Mar 2011.
    16. Barmak, D.H. & Dorso, C.O. & Otero, M., 2016. "Modelling dengue epidemic spreading with human mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 129-140.
    17. Mattia Mazzoli & Riccardo Gallotti & Filippo Privitera & Pere Colet & José J. Ramasco, 2023. "Spatial immunization to abate disease spreading in transportation hubs," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Mikaela Irene D. Fudolig & Daniel Monsivais & Kunal Bhattacharya & Hang-Hyun Jo & Kimmo Kaski, 2020. "Different patterns of social closeness observed in mobile phone communication," Journal of Computational Social Science, Springer, vol. 3(1), pages 1-17, April.
    19. Ventura, Paulo Cesar & Aleta, Alberto & Rodrigues, Francisco A. & Moreno, Yamir, 2022. "Epidemic spreading in populations of mobile agents with adaptive behavioral response," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    20. Yeeli Mui & Bruce Y. Lee & Atif Adam & Anna Y. Kharmats & Nadine Budd & Claudia Nau & Joel Gittelsohn, 2015. "Healthy versus Unhealthy Suppliers in Food Desert Neighborhoods: A Network Analysis of Corner Stores’ Food Supplier Networks," IJERPH, MDPI, vol. 12(12), pages 1-17, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.