IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008442.html
   My bibliography  Save this article

Modelling pathogen spread in a healthcare network: Indirect patient movements

Author

Listed:
  • Monika J Piotrowska
  • Konrad Sakowski
  • André Karch
  • Hannan Tahir
  • Johannes Horn
  • Mirjam E Kretzschmar
  • Rafael T Mikolajczyk

Abstract

Inter-hospital patient transfers (direct transfers) between healthcare facilities have been shown to contribute to the spread of pathogens in a healthcare network. However, the impact of indirect transfers (patients re-admitted from the community to the same or different hospital) is not well studied. This work aims to study the contribution of indirect transfers to the spread of pathogens in a healthcare network. To address this aim, a hybrid network–deterministic model to simulate the spread of multiresistant pathogens in a healthcare system was developed for the region of Lower Saxony (Germany). The model accounts for both, direct and indirect transfers of patients. Intra-hospital pathogen transmission is governed by a SIS model expressed by a system of ordinary differential equations. Our results show that the proposed model reproduces the basic properties of healthcare-associated pathogen spread. They also show the importance of indirect transfers: restricting the pathogen spread to direct transfers only leads to 4.2% system wide prevalence. However, adding indirect transfers leads to an increase in the overall prevalence by a factor of 4 (18%). In addition, we demonstrated that the final prevalence in the individual healthcare facilities depends on average length of stay in a way described by a non-linear concave function. Moreover, we demonstrate that the network parameters of the model may be derived from administrative admission/discharge records. In particular, they are sufficient to obtain inter-hospital transfer probabilities, and to express the patients’ transfers as a Markov process. Using the proposed model, we show that indirect transfers of patients are equally or even more important as direct transfers for the spread of pathogens in a healthcare network.Author summary: Direct patient transfers between hospitals have been shown to play an important role in the spread of pathogens in a healthcare network. However, readmission of patients from the community (indirect transfers) to the same or a different hospital is not well studied, and its role for the spread of pathogens in a healthcare network is not quantified. In this work, we developed a network model of a healthcare system to study the impact of indirect transfers on the prevalence in the individual hospitals as well as in the overall healthcare system. The model includes both, direct and indirect transfers of patients between the healthcare facilities due to transferring as well as readmission of infectious (colonized or infected) patients. Our results show that the readmission of patients (indirect transfers), either to the same or different facility, is an important potential channel of pathogen transmission. Such indirect transfers are of no less importance than direct patient transfers in controlling the spread of pathogens in a healthcare network.

Suggested Citation

  • Monika J Piotrowska & Konrad Sakowski & André Karch & Hannan Tahir & Johannes Horn & Mirjam E Kretzschmar & Rafael T Mikolajczyk, 2020. "Modelling pathogen spread in a healthcare network: Indirect patient movements," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-22, November.
  • Handle: RePEc:plo:pcbi00:1008442
    DOI: 10.1371/journal.pcbi.1008442
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008442
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008442&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanjue Xia & Johannes Horn & Monika J Piotrowska & Konrad Sakowski & André Karch & Hannan Tahir & Mirjam Kretzschmar & Rafael Mikolajczyk, 2021. "Effects of incomplete inter-hospital network data on the assessment of transmission dynamics of hospital-acquired infections," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-18, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.