IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v230y2018icp42-51.html
   My bibliography  Save this article

Learning occupants’ workplace interactions from wearable and stationary ambient sensing systems

Author

Listed:
  • Ghahramani, Ali
  • Pantelic, Jovan
  • Lindberg, Casey
  • Mehl, Matthias
  • Srinivasan, Karthik
  • Gilligan, Brian
  • Arens, Edward

Abstract

Having access to real-time information on building occupants’ state of interactions enables optimization of building systems for improved energy efficiency, well-being and productivity of the occupants. In this paper, we propose a framework to learn occupant interactions from ambient sensing technologies (e.g., sensing of variables such as sound (dB), CO2 (ppm), light intensity (lux), dry-bulb temperature (°C), relative humidity (RH%), pressure (mbar)) from both stationary and wearable devices and select the technologies and averaging windows which contain the required information for learning. In this framework, several supervised machine learning algorithms are tested on the labeled datasets and the algorithm which outperforms others is selected. Two types of sensing devices were utilized for analyses: wearable devices worn around the neck by the test subjects, and a network of stationary devices located in the test subjects' working indoor spaces. 221 employees of federal agencies housed in facilities managed by the US. General Services Administration in the mid-Atlantic and Southern states participated in this study, answering questions about their current task every hour. Overall accuracies were observed of 86.72% for wearable and stationary devices, 81.25% for only wearable-only, and 85.16% for stationary-only for prediction of the mixed multi-label classification via Random Forests algorithm. The high prediction allows for identifying subjects’ tasks when training labels are not available. Predicting occupants’ interactions as a main indicator of occupants’ behavior have significant implications for the energy efficiency of building systems (up to 20% savings).

Suggested Citation

  • Ghahramani, Ali & Pantelic, Jovan & Lindberg, Casey & Mehl, Matthias & Srinivasan, Karthik & Gilligan, Brian & Arens, Edward, 2018. "Learning occupants’ workplace interactions from wearable and stationary ambient sensing systems," Applied Energy, Elsevier, vol. 230(C), pages 42-51.
  • Handle: RePEc:eee:appene:v:230:y:2018:i:c:p:42-51
    DOI: 10.1016/j.apenergy.2018.08.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918312571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.08.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mostavi, Ehsan & Asadi, Somayeh & Boussaa, Djamel, 2017. "Development of a new methodology to optimize building life cycle cost, environmental impacts, and occupant satisfaction," Energy, Elsevier, vol. 121(C), pages 606-615.
    2. Ghahramani, Ali & Zhang, Kenan & Dutta, Kanu & Yang, Zheng & Becerik-Gerber, Burcin, 2016. "Energy savings from temperature setpoints and deadband: Quantifying the influence of building and system properties on savings," Applied Energy, Elsevier, vol. 165(C), pages 930-942.
    3. Ciro Cattuto & Wouter Van den Broeck & Alain Barrat & Vittoria Colizza & Jean-François Pinton & Alessandro Vespignani, 2010. "Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks," PLOS ONE, Public Library of Science, vol. 5(7), pages 1-9, July.
    4. Wang, Qinpeng & Augenbroe, Godfried & Kim, Ji-Hyun & Gu, Li, 2016. "Meta-modeling of occupancy variables and analysis of their impact on energy outcomes of office buildings," Applied Energy, Elsevier, vol. 174(C), pages 166-180.
    5. Pentland, Alex (Sandy), 2007. "Automatic mapping and modeling of human networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 59-67.
    6. Ahmadi-Karvigh, Simin & Ghahramani, Ali & Becerik-Gerber, Burcin & Soibelman, Lucio, 2018. "Real-time activity recognition for energy efficiency in buildings," Applied Energy, Elsevier, vol. 211(C), pages 146-160.
    7. Hamed Nabizadeh Rafsanjani & Changbum R. Ahn & Mahmoud Alahmad, 2015. "A Review of Approaches for Sensing, Understanding, and Improving Occupancy-Related Energy-Use Behaviors in Commercial Buildings," Energies, MDPI, vol. 8(10), pages 1-34, October.
    8. Ghahramani, Ali & Castro, Guillermo & Karvigh, Simin Ahmadi & Becerik-Gerber, Burcin, 2018. "Towards unsupervised learning of thermal comfort using infrared thermography," Applied Energy, Elsevier, vol. 211(C), pages 41-49.
    9. Martins, Nuno R. & Carrilho da Graça, Guilherme, 2017. "Impact of outdoor PM2.5 on natural ventilation usability in California’s nondomestic buildings," Applied Energy, Elsevier, vol. 189(C), pages 711-724.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Ding & Xiao Pan & Wanyue Chen & Zhe Tian & Zhiyao Wang & Qing He, 2022. "Prediction Method for Office Building Energy Consumption Based on an Agent-Based Model Considering Occupant–Equipment Interaction Behavior," Energies, MDPI, vol. 15(22), pages 1-31, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghahramani, Ali & Castro, Guillermo & Karvigh, Simin Ahmadi & Becerik-Gerber, Burcin, 2018. "Towards unsupervised learning of thermal comfort using infrared thermography," Applied Energy, Elsevier, vol. 211(C), pages 41-49.
    2. Bui, Dac-Khuong & Nguyen, Tuan Ngoc & Ngo, Tuan Duc & Nguyen-Xuan, H., 2020. "An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings," Energy, Elsevier, vol. 190(C).
    3. Alibabaei, Nima & Fung, Alan S. & Raahemifar, Kaamran & Moghimi, Arash, 2017. "Effects of intelligent strategy planning models on residential HVAC system energy demand and cost during the heating and cooling seasons," Applied Energy, Elsevier, vol. 185(P1), pages 29-43.
    4. Wang, Junqi & Jiang, Lanfei & Yu, Hanhui & Feng, Zhuangbo & Castaño-Rosa, Raúl & Cao, Shi-jie, 2024. "Computer vision to advance the sensing and control of built environment towards occupant-centric sustainable development: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    5. Hossein Moayedi & Amir Mosavi, 2021. "Suggesting a Stochastic Fractal Search Paradigm in Combination with Artificial Neural Network for Early Prediction of Cooling Load in Residential Buildings," Energies, MDPI, vol. 14(6), pages 1-19, March.
    6. Rafsanjani, Hamed Nabizadeh & Ghahramani, Ali & Nabizadeh, Amir Hossein, 2020. "iSEA: IoT-based smartphone energy assistant for prompting energy-aware behaviors in commercial buildings," Applied Energy, Elsevier, vol. 266(C).
    7. Gregory, Steve, 2012. "Ordered community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2752-2763.
    8. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    9. Kobayashi, Teruyoshi & Takaguchi, Taro, 2018. "Identifying relationship lending in the interbank market: A network approach," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 20-36.
    10. Costanzo, Vincenzo & Yao, Runming & Xu, Tiantian & Xiong, Jie & Zhang, Qiulei & Li, Baizhan, 2019. "Natural ventilation potential for residential buildings in a densely built-up and highly polluted environment. A case study," Renewable Energy, Elsevier, vol. 138(C), pages 340-353.
    11. Ahmed, Omar & Sezer, Nurettin & Ouf, Mohamed & Wang, Liangzhu (Leon) & Hassan, Ibrahim Galal, 2023. "State-of-the-art review of occupant behavior modeling and implementation in building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    12. Moe Soheilian & Géza Fischl & Myriam Aries, 2021. "Smart Lighting Application for Energy Saving and User Well-Being in the Residential Environment," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    13. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    14. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    15. Fabio Caccioli & Paolo Barucca & Teruyoshi Kobayashi, 2018. "Network models of financial systemic risk: a review," Journal of Computational Social Science, Springer, vol. 1(1), pages 81-114, January.
    16. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    17. Eugenio Valdano & Chiara Poletto & Armando Giovannini & Diana Palma & Lara Savini & Vittoria Colizza, 2015. "Predicting Epidemic Risk from Past Temporal Contact Data," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-19, March.
    18. Hanjue Xia & Johannes Horn & Monika J Piotrowska & Konrad Sakowski & André Karch & Hannan Tahir & Mirjam Kretzschmar & Rafael Mikolajczyk, 2021. "Effects of incomplete inter-hospital network data on the assessment of transmission dynamics of hospital-acquired infections," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-18, May.
    19. Schaffer, Markus & Vera-Valdés, J. Eduardo & Marszal-Pomianowska, Anna, 2024. "Exploring smart heat meter data: A co-clustering driven approach to analyse the energy use of single-family houses," Applied Energy, Elsevier, vol. 371(C).
    20. Mark Kibanov & Raphael H. Heiberger & Simone Rödder & Martin Atzmueller & Gerd Stumme, 2019. "Social studies of scholarly life with sensor-based ethnographic observations," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1387-1428, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:230:y:2018:i:c:p:42-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.