IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v203y2020ics0951832020305767.html
   My bibliography  Save this article

Accounting for erroneous model structures in biokinetic process models

Author

Listed:
  • Villez, Kris
  • Del Giudice, Dario
  • Neumann, Marc B.
  • Rieckermann, Jörg

Abstract

In engineering practice, model-based design requires not only a good process-based model, but also a good description of stochastic disturbances and measurement errors to learn credible parameter values from observations. However, typical methods use Gaussian error models, which often cannot describe the complex temporal patterns of residuals. Consequently, this results in overconfidence in the identified parameters and, in turn, optimistic reactor designs. In this work, we assess the strengths and weaknesses of a method to statistically describe these patterns with autocorrelated error models. This method produces increased widths of the credible prediction intervals following the inclusion of the bias term, in turn leading to more conservative design choices. However, we also show that the augmented error model is not a universal tool, as its application cannot guarantee the desired reliability of the resulting wastewater reactor design.

Suggested Citation

  • Villez, Kris & Del Giudice, Dario & Neumann, Marc B. & Rieckermann, Jörg, 2020. "Accounting for erroneous model structures in biokinetic process models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:reensy:v:203:y:2020:i:c:s0951832020305767
    DOI: 10.1016/j.ress.2020.107075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020305767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael L. Stein, 2005. "Space-Time Covariance Functions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 310-321, March.
    2. Cagno, Enrico & De Ambroggi, Massimiliano & Grande, Ottavio & Trucco, Paolo, 2011. "Risk analysis of underground infrastructures in urban areas," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 139-148.
    3. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    4. Gneiting T., 2002. "Nonseparable, Stationary Covariance Functions for Space-Time Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 590-600, June.
    5. Cesare, L. De & Myers, D. E. & Posa, D., 2001. "Estimating and modeling space-time correlation structures," Statistics & Probability Letters, Elsevier, vol. 51(1), pages 9-14, January.
    6. Kabir, Golam & Tesfamariam, Solomon & Sadiq, Rehan, 2015. "Predicting water main failures using Bayesian model averaging and survival modelling approach," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 498-514.
    7. Jensen, H.A. & Jerez, D.J., 2018. "A Stochastic Framework for Reliability and Sensitivity Analysis of Large Scale Water Distribution Networks," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 80-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.
    2. P. Gregori & E. Porcu & J. Mateu & Z. Sasvári, 2008. "On potentially negative space time covariances obtained as sum of products of marginal ones," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 865-882, December.
    3. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    4. Anup Suryawanshi & Debraj Ghosh, 2015. "Wind speed prediction using spatio-temporal covariance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1435-1449, January.
    5. José-María Montero & Gema Fernández-Avilés & Tiziana Laureti, 2021. "A Local Spatial STIRPAT Model for Outdoor NO x Concentrations in the Community of Madrid, Spain," Mathematics, MDPI, vol. 9(6), pages 1-33, March.
    6. Tingjin Chu & Jialuo Liu & Jun Zhu & Haonan Wang, 2022. "Spatio-Temporal Expanding Distance Asymptotic Framework for Locally Stationary Processes," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 689-713, August.
    7. S. De Iaco & M. Palma & D. Posa, 2013. "Prediction of particle pollution through spatio-temporal multivariate geostatistical analysis: spatial special issue," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 133-150, April.
    8. Lim, S.C. & Teo, L.P., 2009. "Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1325-1356, April.
    9. Raquel Menezes & Helena Piairo & Pilar García-Soidán & Inês Sousa, 2016. "Spatial–temporal modellization of the $$\hbox {NO}_{2}$$ NO 2 concentration data through geostatistical tools," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 107-124, March.
    10. Raquel Menezes & Helena Piairo & Pilar García-Soidán & Inês Sousa, 2016. "Spatial–temporal modellization of the $$\hbox {NO}_{2}$$ NO 2 concentration data through geostatistical tools," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 107-124, March.
    11. Moreno Bevilacqua & Christian Caamaño-Carrillo & Reinaldo B. Arellano-Valle & Camilo Gómez, 2022. "A class of random fields with two-piece marginal distributions for modeling point-referenced data with spatial outliers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 644-674, September.
    12. Fernández-Avilés, G & Montero, JM & Mateu, J, 2011. "Mathematical Genesis of the Spatio-Temporal Covariance Functions," MPRA Paper 35874, University Library of Munich, Germany.
    13. Alexandre Rodrigues & Peter J. Diggle, 2010. "A Class of Convolution‐Based Models for Spatio‐Temporal Processes with Non‐Separable Covariance Structure," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 553-567, December.
    14. De Iaco, S., 2023. "Spatio-temporal generalized complex covariance models based on convolution," Computational Statistics & Data Analysis, Elsevier, vol. 183(C).
    15. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, August.
    16. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    17. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    18. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
    19. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.
    20. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:203:y:2020:i:c:s0951832020305767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.