IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007290.html
   My bibliography  Save this article

Estimating information in time-varying signals

Author

Listed:
  • Sarah Anhala Cepeda-Humerez
  • Jakob Ruess
  • Gašper Tkačik

Abstract

Across diverse biological systems—ranging from neural networks to intracellular signaling and genetic regulatory networks—the information about changes in the environment is frequently encoded in the full temporal dynamics of the network nodes. A pressing data-analysis challenge has thus been to efficiently estimate the amount of information that these dynamics convey from experimental data. Here we develop and evaluate decoding-based estimation methods to lower bound the mutual information about a finite set of inputs, encoded in single-cell high-dimensional time series data. For biological reaction networks governed by the chemical Master equation, we derive model-based information approximations and analytical upper bounds, against which we benchmark our proposed model-free decoding estimators. In contrast to the frequently-used k-nearest-neighbor estimator, decoding-based estimators robustly extract a large fraction of the available information from high-dimensional trajectories with a realistic number of data samples. We apply these estimators to previously published data on Erk and Ca2+ signaling in mammalian cells and to yeast stress-response, and find that substantial amount of information about environmental state can be encoded by non-trivial response statistics even in stationary signals. We argue that these single-cell, decoding-based information estimates, rather than the commonly-used tests for significant differences between selected population response statistics, provide a proper and unbiased measure for the performance of biological signaling networks.Author summary: Cells represent changes in their own state or in the state of their environment by temporally varying the concentrations of intracellular signaling molecules, mimicking in a simple chemical context the way we humans represent our thoughts and observations through temporally varying patterns of sounds that constitute speech. These time-varying concentrations are used as signals to regulate downstream molecular processes, to mount appropriate cellular responses for the environmental challenges, or to communicate with nearby cells. But how precise and unambiguous is such chemical communication, in theory and in data? On the one hand, intuition tells us that many possible environmental changes could be represented by variation in concentration patterns of multiple signaling chemicals; on the other, we know that chemical signals are inherently noisy at the molecular scale. Here we develop data analysis methodology that allows us to pose and answer these questions rigorously. Our decoding-based information estimators, which we test on simulated and real data from yeast and mammalian cells, measure how precisely individual cells can detect and report environmental changes, without making assumptions about the structure of the chemical communication and using only the amounts of data that is typically available in today’s experiments.

Suggested Citation

  • Sarah Anhala Cepeda-Humerez & Jakob Ruess & Gašper Tkačik, 2019. "Estimating information in time-varying signals," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-33, September.
  • Handle: RePEc:plo:pcbi00:1007290
    DOI: 10.1371/journal.pcbi.1007290
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007290
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007290&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007290?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Avigdor Eldar & Michael B. Elowitz, 2010. "Functional roles for noise in genetic circuits," Nature, Nature, vol. 467(7312), pages 167-173, September.
    2. Dimitri Yatsenko & Krešimir Josić & Alexander S Ecker & Emmanouil Froudarakis & R James Cotton & Andreas S Tolias, 2015. "Improved Estimation and Interpretation of Correlations in Neural Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-28, March.
    3. Vasicek, Oldrich A, 1973. "A Note on Using Cross-Sectional Information in Bayesian Estimation of Security Betas," Journal of Finance, American Finance Association, vol. 28(5), pages 1233-1239, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seth Teague & Gillian Primavera & Bohan Chen & Zong-Yuan Liu & LiAng Yao & Emily Freeburne & Hina Khan & Kyoung Jo & Craig Johnson & Idse Heemskerk, 2024. "Time-integrated BMP signaling determines fate in a stem cell model for early human development," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calcagno, R. & Renneboog, L.D.R., 2004. "Capital Structure and Managerial Compensation : The Effects of Renumeration Seniority," Discussion Paper 2004-120, Tilburg University, Center for Economic Research.
    2. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    3. Marc Goergen & Luc Renneboog, 2004. "Shareholder Wealth Effects of European Domestic and Cross‐border Takeover Bids," European Financial Management, European Financial Management Association, vol. 10(1), pages 9-45, March.
    4. Francesco Busato & Cuono Massimo Coletta & Maria Manganiello, 2019. "Estimating the Cost of Equity Capital: Forecasting Accuracy for U.S. REIT Sector," International Real Estate Review, Asian Real Estate Society, vol. 22(3), pages 401-432.
    5. Gabriel A. Hawawini & Ashok Vora, 1982. "Investment Horizon, Diversification, And The Efficiency Of Alternative Beta Forecasts," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 5(1), pages 1-15, March.
    6. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.
    7. Dana J. Johnson & Richard E. Bennett & Richard J. Curcio, 1979. "A Note On The Deceptive Nature Of Bayesian Forecasted Betas," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 2(1), pages 65-69, March.
    8. N. Groenewold & P. Fraser, 1999. "Forecasting Beta: How well does the 'five year rule of thumb' do?," Economics Discussion / Working Papers 99-01, The University of Western Australia, Department of Economics.
    9. Annaert, Jan & Mensah, Lord, 2014. "Cross-sectional predictability of stock returns, evidence from the 19th century Brussels Stock Exchange (1873–1914)," Explorations in Economic History, Elsevier, vol. 52(C), pages 22-43.
    10. Jones, Christopher S. & Shanken, Jay, 2005. "Mutual fund performance with learning across funds," Journal of Financial Economics, Elsevier, vol. 78(3), pages 507-552, December.
    11. Lee, Julian, 2023. "Poisson distributions in stochastic dynamics of gene expression: What events do they count?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    12. Manfred Gilli & Enrico Schumann, 2012. "Heuristic optimisation in financial modelling," Annals of Operations Research, Springer, vol. 193(1), pages 129-158, March.
    13. Asness, Cliff & Frazzini, Andrea & Gormsen, Niels Joachim & Pedersen, Lasse Heje, 2020. "Betting against correlation: Testing theories of the low-risk effect," Journal of Financial Economics, Elsevier, vol. 135(3), pages 629-652.
    14. Lucy Ham & Megan A. Coomer & Kaan Öcal & Ramon Grima & Michael P. H. Stumpf, 2024. "A stochastic vs deterministic perspective on the timing of cellular events," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Bessler, Wolfgang & Leonhardt, Alexander & Wolff, Dominik, 2016. "Analyzing hedging strategies for fixed income portfolios: A Bayesian approach for model selection," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 239-256.
    16. A. D. Castagna & Z. P. Matolcsy, 1978. "The Relationship Between Accounting Variables and Systematic Risk and the Prediction of Systematic Risk," Australian Journal of Management, Australian School of Business, vol. 3(2), pages 113-126, October.
    17. Gertsman, Gleb & Frehen, Rik & Werker, Bas J.M., 2019. "Would Ambiguity Averse Investors Hedge Risk in Equity Markets?," Other publications TiSEM bd3eb3e5-517e-40d4-aab9-e, Tilburg University, School of Economics and Management.
    18. Philippe Mueller & Gyuri Venter & Andrea Vedolin & Aytek Malkhozov, 2014. "International Liquidity CAPM," 2014 Meeting Papers 1165, Society for Economic Dynamics.
    19. Cynthia M. Gong & Di Luo & Huainan Zhao, 2021. "Liquidity risk and the beta premium," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 44(4), pages 789-814, December.
    20. Georg Fritz & Judith A Megerle & Sonja A Westermayer & Delia Brick & Ralf Heermann & Kirsten Jung & Joachim O Rädler & Ulrich Gerland, 2014. "Single Cell Kinetics of Phenotypic Switching in the Arabinose Utilization System of E. coli," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.