Author
Listed:
- Falk Lieder
- Amitai Shenhav
- Sebastian Musslick
- Thomas L Griffiths
Abstract
The human brain has the impressive capacity to adapt how it processes information to high-level goals. While it is known that these cognitive control skills are malleable and can be improved through training, the underlying plasticity mechanisms are not well understood. Here, we develop and evaluate a model of how people learn when to exert cognitive control, which controlled process to use, and how much effort to exert. We derive this model from a general theory according to which the function of cognitive control is to select and configure neural pathways so as to make optimal use of finite time and limited computational resources. The central idea of our Learned Value of Control model is that people use reinforcement learning to predict the value of candidate control signals of different types and intensities based on stimulus features. This model correctly predicts the learning and transfer effects underlying the adaptive control-demanding behavior observed in an experiment on visual attention and four experiments on interference control in Stroop and Flanker paradigms. Moreover, our model explained these findings significantly better than an associative learning model and a Win-Stay Lose-Shift model. Our findings elucidate how learning and experience might shape people’s ability and propensity to adaptively control their minds and behavior. We conclude by predicting under which circumstances these learning mechanisms might lead to self-control failure.Author summary: The human brain has the impressive ability to adapt how it processes information to high level goals. While it is known that these cognitive control skills are malleable and can be improved through training, the underlying plasticity mechanisms are not well understood. Here, we derive a computational model of how people learn when to exert cognitive control, which controlled process to use, and how much effort to exert from a formal theory of the function of cognitive control. Across five experiments, we find that our model correctly predicts that people learn to adaptively regulate their attention and decision-making and how these learning effects transfer to novel situations. Our findings elucidate how learning and experience might shape people’s ability and propensity to adaptively control their minds and behavior. We conclude by predicting under which circumstances these learning mechanisms might lead to self-control failure.
Suggested Citation
Falk Lieder & Amitai Shenhav & Sebastian Musslick & Thomas L Griffiths, 2018.
"Rational metareasoning and the plasticity of cognitive control,"
PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-27, April.
Handle:
RePEc:plo:pcbi00:1006043
DOI: 10.1371/journal.pcbi.1006043
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006043. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.