IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005912.html
   My bibliography  Save this article

LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction

Author

Listed:
  • Xing Chen
  • Li Huang

Abstract

Predicting novel microRNA (miRNA)-disease associations is clinically significant due to miRNAs’ potential roles of diagnostic biomarkers and therapeutic targets for various human diseases. Previous studies have demonstrated the viability of utilizing different types of biological data to computationally infer new disease-related miRNAs. Yet researchers face the challenge of how to effectively integrate diverse datasets and make reliable predictions. In this study, we presented a computational model named Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction (LRSSLMDA), which projected miRNAs/diseases’ statistical feature profile and graph theoretical feature profile to a common subspace. It used Laplacian regularization to preserve the local structures of the training data and a L1-norm constraint to select important miRNA/disease features for prediction. The strength of dimensionality reduction enabled the model to be easily extended to much higher dimensional datasets than those exploited in this study. Experimental results showed that LRSSLMDA outperformed ten previous models: the AUC of 0.9178 in global leave-one-out cross validation (LOOCV) and the AUC of 0.8418 in local LOOCV indicated the model’s superior prediction accuracy; and the average AUC of 0.9181+/-0.0004 in 5-fold cross validation justified its accuracy and stability. In addition, three types of case studies further demonstrated its predictive power. Potential miRNAs related to Colon Neoplasms, Lymphoma, Kidney Neoplasms, Esophageal Neoplasms and Breast Neoplasms were predicted by LRSSLMDA. Respectively, 98%, 88%, 96%, 98% and 98% out of the top 50 predictions were validated by experimental evidences. Therefore, we conclude that LRSSLMDA would be a valuable computational tool for miRNA-disease association prediction.Author summary: Discovering miRNA-disease associations promotes the understanding towards the molecular mechanisms of various human diseases at the miRNA level, and contributes to the development of diagnostic biomarkers and treatment tools for diseases. Computational models can make the discovery more efficient and experiments more productive. LRSSLMDA was proposed to computationally infer potential miRNA-disease associations via adopting sparse subspace learning with Laplacian regularization on the known miRNA-disease association network and the informative feature profiles extracted from the integrated miRNA/disease similarity networks. Experimental results in global and local leave-one-out cross validation and 5-fold cross validation showed a superior prediction performance of LRSSLMDA over previous models. Moreover, three types of case studies on five important human diseases were carried out to further demonstrate the model’s predictive power: respectively, 98%, 88%, 96%, 98% and 98% out of the top 50 predicted miRNAs were confirmed by experimental literatures. So, we believe that LRSSLMDA could make reliable predictions and might guide future experimental studies on miRNA-disease associations.

Suggested Citation

  • Xing Chen & Li Huang, 2017. "LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction," PLOS Computational Biology, Public Library of Science, vol. 13(12), pages 1-28, December.
  • Handle: RePEc:plo:pcbi00:1005912
    DOI: 10.1371/journal.pcbi.1005912
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005912
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005912&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gunter Meister & Thomas Tuschl, 2004. "Mechanisms of gene silencing by double-stranded RNA," Nature, Nature, vol. 431(7006), pages 343-349, September.
    2. Victor Ambros, 2004. "The functions of animal microRNAs," Nature, Nature, vol. 431(7006), pages 350-355, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ang Li & Yingwei Deng & Yan Tan & Min Chen, 2021. "A novel miRNA-disease association prediction model using dual random walk with restart and space projection federated method," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.
    2. Xie, Guobo & Wu, Lifeng & Lin, Zhiyi & Cui, Ji, 2020. "WLDAP: A computational model of weighted lncRNA-disease associations prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    3. Xiujuan Lei & Wenxiang Zhang, 2019. "BRWSP: Predicting circRNA-Disease Associations Based on Biased Random Walk to Search Paths on a Multiple Heterogeneous Network," Complexity, Hindawi, vol. 2019, pages 1-12, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing Chen & Jun Yin & Jia Qu & Li Huang, 2018. "MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-24, August.
    2. Thuc Duy Le & Junpeng Zhang & Lin Liu & Jiuyong Li, 2015. "Ensemble Methods for MiRNA Target Prediction from Expression Data," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-19, June.
    3. Zhen Shen & You-Hua Zhang & Kyungsook Han & Asoke K. Nandi & Barry Honig & De-Shuang Huang, 2017. "miRNA-Disease Association Prediction with Collaborative Matrix Factorization," Complexity, Hindawi, vol. 2017, pages 1-9, September.
    4. José María Galván-Román & Ángel Lancho-Sánchez & Sergio Luquero-Bueno & Lorena Vega-Piris & Jose Curbelo & Marcos Manzaneque-Pradales & Manuel Gómez & Hortensia de la Fuente & Mara Ortega-Gómez & Javi, 2020. "Usefulness of circulating microRNAs miR-146a and miR-16-5p as prognostic biomarkers in community-acquired pneumonia," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-13, October.
    5. Kshitij Srivastava & Anvesha Srivastava, 2012. "Comprehensive Review of Genetic Association Studies and Meta-Analyses on miRNA Polymorphisms and Cancer Risk," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-1, November.
    6. Yanyan Wang & Yujie Zhang & Chi Pan & Feixia Ma & Suzhan Zhang, 2015. "Prediction of Poor Prognosis in Breast Cancer Patients Based on MicroRNA-21 Expression: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-13, February.
    7. Jun Meng & Lin Shi & Yushi Luan, 2014. "Plant microRNA-Target Interaction Identification Model Based on the Integration of Prediction Tools and Support Vector Machine," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-12, July.
    8. Thierry Chekouo & Francesco C. Stingo & James D. Doecke & Kim-Anh Do, 2015. "miRNA–target gene regulatory networks: A Bayesian integrative approach to biomarker selection with application to kidney cancer," Biometrics, The International Biometric Society, vol. 71(2), pages 428-438, June.
    9. Ang Li & Yingwei Deng & Yan Tan & Min Chen, 2021. "A novel miRNA-disease association prediction model using dual random walk with restart and space projection federated method," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.
    10. J. Fulneček, 2007. "Isolation and detection of small RNA molecules," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 53(10), pages 451-455.
    11. Charlotte Glinge & Sebastian Clauss & Kim Boddum & Reza Jabbari & Javad Jabbari & Bjarke Risgaard & Philipp Tomsits & Bianca Hildebrand & Stefan Kääb & Reza Wakili & Thomas Jespersen & Jacob Tfelt-Han, 2017. "Stability of Circulating Blood-Based MicroRNAs – Pre-Analytic Methodological Considerations," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-16, February.
    12. Alexander Link & Verena Becker & Ajay Goel & Thomas Wex & Peter Malfertheiner, 2012. "Feasibility of Fecal MicroRNAs as Novel Biomarkers for Pancreatic Cancer," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-9, August.
    13. Hossain Ahmed & Beyene Joseph, 2013. "Estimation of weighted log partial area under the ROC curve and its application to MicroRNA expression data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(6), pages 743-755, December.
    14. Emilie Estrabaud & Kevin Appourchaux & Ivan Bièche & Fabrice Carrat & Martine Lapalus & Olivier Lada & Michelle Martinot-Peignoux & Nathalie Boyer & Patrick Marcellin & Michel Vidaud & Tarik Asselah, 2015. "IFI35, mir-99a and HCV Genotype to Predict Sustained Virological Response to Pegylated-Interferon Plus Ribavirin in Chronic Hepatitis C," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-19, April.
    15. Hai Lian & Lei Wang & Jingmin Zhang, 2012. "Increased Risk of Breast Cancer Associated with CC Genotype of Has-miR-146a Rs2910164 Polymorphism in Europeans," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-7, February.
    16. Fabricio F Costa & Jared M Bischof & Elio F Vanin & Rishi R Lulla & Min Wang & Simone T Sredni & Veena Rajaram & Maria de Fátima Bonaldo & Deli Wang & Stewart Goldman & Tadanori Tomita & Marcelo B Soa, 2011. "Identification of MicroRNAs as Potential Prognostic Markers in Ependymoma," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-10, October.
    17. Le Thi Truc Linh, 2018. "The Microrna 29 family and its regulation," HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - ENGINEERING AND TECHNOLOGY, HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE, HO CHI MINH CITY OPEN UNIVERSITY, vol. 8(1), pages 18-27.
    18. Seyedehsadaf Asfa & Halil Ibrahim Toy & Reza Arshinchi Bonab & George P. Chrousos & Athanasia Pavlopoulou & Styliani A. Geronikolou, 2023. "Soft Tissue Ewing Sarcoma Cell Drug Resistance Revisited: A Systems Biology Approach," IJERPH, MDPI, vol. 20(13), pages 1-17, July.
    19. Man-Tang Qiu & Jing-Wen Hu & Xiang-Xiang Ding & Xin Yang & Zhi Zhang & Rong Yin & Lin Xu, 2012. "Hsa-miR-499 rs3746444 Polymorphism Contributes to Cancer Risk: A Meta-Analysis of 12 Studies," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-7, December.
    20. Li Li & Yunjian Sheng & Lin Lv & Jian Gao, 2013. "The Association between Two MicroRNA Variants (miR-499, miR-149) and Gastrointestinal Cancer Risk: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.