IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0103181.html
   My bibliography  Save this article

Plant microRNA-Target Interaction Identification Model Based on the Integration of Prediction Tools and Support Vector Machine

Author

Listed:
  • Jun Meng
  • Lin Shi
  • Yushi Luan

Abstract

Background: Confident identification of microRNA-target interactions is significant for studying the function of microRNA (miRNA). Although some computational miRNA target prediction methods have been proposed for plants, results of various methods tend to be inconsistent and usually lead to more false positive. To address these issues, we developed an integrated model for identifying plant miRNA–target interactions. Results: Three online miRNA target prediction toolkits and machine learning algorithms were integrated to identify and analyze Arabidopsis thaliana miRNA-target interactions. Principle component analysis (PCA) feature extraction and self-training technology were introduced to improve the performance. Results showed that the proposed model outperformed the previously existing methods. The results were validated by using degradome sequencing supported Arabidopsis thaliana miRNA-target interactions. The proposed model constructed on Arabidopsis thaliana was run over Oryza sativa and Vitis vinifera to demonstrate that our model is effective for other plant species. Conclusions: The integrated model of online predictors and local PCA-SVM classifier gained credible and high quality miRNA-target interactions. The supervised learning algorithm of PCA-SVM classifier was employed in plant miRNA target identification for the first time. Its performance can be substantially improved if more experimentally proved training samples are provided.

Suggested Citation

  • Jun Meng & Lin Shi & Yushi Luan, 2014. "Plant microRNA-Target Interaction Identification Model Based on the Integration of Prediction Tools and Support Vector Machine," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-12, July.
  • Handle: RePEc:plo:pone00:0103181
    DOI: 10.1371/journal.pone.0103181
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103181
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0103181&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0103181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gunter Meister & Thomas Tuschl, 2004. "Mechanisms of gene silencing by double-stranded RNA," Nature, Nature, vol. 431(7006), pages 343-349, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing Chen & Jun Yin & Jia Qu & Li Huang, 2018. "MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-24, August.
    2. Xing Chen & Li Huang, 2017. "LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction," PLOS Computational Biology, Public Library of Science, vol. 13(12), pages 1-28, December.
    3. J. Fulneček, 2007. "Isolation and detection of small RNA molecules," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 53(10), pages 451-455.
    4. Emilie Estrabaud & Kevin Appourchaux & Ivan Bièche & Fabrice Carrat & Martine Lapalus & Olivier Lada & Michelle Martinot-Peignoux & Nathalie Boyer & Patrick Marcellin & Michel Vidaud & Tarik Asselah, 2015. "IFI35, mir-99a and HCV Genotype to Predict Sustained Virological Response to Pegylated-Interferon Plus Ribavirin in Chronic Hepatitis C," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-19, April.
    5. Arnaud Segers & Joachim Carpentier & Frédéric Francis & Rudy Caparros Megido, 2023. "Gene Silencing of laccase 1 Induced by Double-Stranded RNA in Callosobruchus maculatus (Fabricius 1775) (Coleoptera: Chrysomelidae) Suggests RNAi as a Potential New Biotechnological Tool for Bruchid’s," Agriculture, MDPI, vol. 13(2), pages 1-19, February.
    6. Thuc Duy Le & Junpeng Zhang & Lin Liu & Jiuyong Li, 2015. "Ensemble Methods for MiRNA Target Prediction from Expression Data," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-19, June.
    7. Zhen Shen & You-Hua Zhang & Kyungsook Han & Asoke K. Nandi & Barry Honig & De-Shuang Huang, 2017. "miRNA-Disease Association Prediction with Collaborative Matrix Factorization," Complexity, Hindawi, vol. 2017, pages 1-9, September.
    8. Lei Li & Yu-Tian Wang & Cun-Mei Ji & Chun-Hou Zheng & Jian-Cheng Ni & Yan-Sen Su, 2021. "GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0103181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.