IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0054215.html
   My bibliography  Save this article

The Sequence Structures of Human MicroRNA Molecules and Their Implications

Author

Listed:
  • Zhide Fang
  • Ruofei Du
  • Andrea Edwards
  • Erik K Flemington
  • Kun Zhang

Abstract

The count of the nucleotides in a cloned, short genomic sequence has become an important criterion to annotate such a sequence as a miRNA molecule. While the majority of human mature miRNA sequences consist of 22 nucleotides, there exists discrepancy in the characteristic lengths of the miRNA sequences. There is also a lack of systematic studies on such length distribution and on the biological factors that are related to or may affect this length. In this paper, we intend to fill this gap by investigating the sequence structure of human miRNA molecules using statistics tools. We demonstrate that the traditional discrete probability distributions do not model the length distribution of the human mature miRNAs well, and we obtain the statistical distribution model with a decent fit. We observe that the four nucleotide bases in a miRNA sequence are not randomly distributed, implying that possible structural patterns such as dinucleotide (trinucleotide or higher order) may exist. Furthermore, we study the relationships of this length distribution to multiple important factors such as evolutionary conservation, tumorigenesis, the length of precursor loop structures, and the number of predicted targets. The association between the miRNA sequence length and the distributions of target site counts in corresponding predicted genes is also presented. This study results in several novel findings worthy of further investigation that include: (1) rapid evolution introduces variation to the miRNA sequence length distribution; (2) miRNAs with extreme sequence lengths are unlikely to be cancer-related; and (3) the miRNA sequence length is positively correlated to the precursor length and the number of predicted target genes.

Suggested Citation

  • Zhide Fang & Ruofei Du & Andrea Edwards & Erik K Flemington & Kun Zhang, 2013. "The Sequence Structures of Human MicroRNA Molecules and Their Implications," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-9, January.
  • Handle: RePEc:plo:pone00:0054215
    DOI: 10.1371/journal.pone.0054215
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054215
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0054215&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0054215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0054215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.