IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005483.html
   My bibliography  Save this article

Nucleotide-time alignment for molecular recorders

Author

Listed:
  • Thaddeus R Cybulski
  • Edward S Boyden
  • George M Church
  • Keith E J Tyo
  • Konrad P Kording

Abstract

Using a DNA polymerase to record intracellular calcium levels has been proposed as a novel neural recording technique, promising massive-scale, single-cell resolution monitoring of large portions of the brain. This technique relies on local storage of neural activity in strands of DNA, followed by offline analysis of that DNA. In simple implementations of this scheme, the time when each nucleotide was written cannot be determined directly by post-hoc DNA sequencing; the timing data must be estimated instead. Here, we use a Dynamic Time Warping-based algorithm to perform this estimation, exploiting correlations between neural activity and observed experimental variables to translate DNA-based signals to an estimate of neural activity over time. This algorithm improves the parallelizability of traditional Dynamic Time Warping, allowing several-fold increases in computation speed. The algorithm also provides a solution to several critical problems with the molecular recording paradigm: determining recording start times and coping with DNA polymerase pausing. The algorithm can generally locate DNA-based records to within

Suggested Citation

  • Thaddeus R Cybulski & Edward S Boyden & George M Church & Keith E J Tyo & Konrad P Kording, 2017. "Nucleotide-time alignment for molecular recorders," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-22, May.
  • Handle: RePEc:plo:pcbi00:1005483
    DOI: 10.1371/journal.pcbi.1005483
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005483
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005483&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005483?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bradley Michael Zamft & Adam H Marblestone & Konrad Kording & Daniel Schmidt & Daniel Martin-Alarcon & Keith Tyo & Edward S Boyden & George Church, 2012. "Measuring Cation Dependent DNA Polymerase Fidelity Landscapes by Deep Sequencing," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-10, August.
    2. Joshua I Glaser & Bradley M Zamft & Adam H Marblestone & Jeffrey R Moffitt & Keith Tyo & Edward S Boyden & George Church & Konrad P Kording, 2013. "Statistical Analysis of Molecular Signal Recording," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-14, July.
    3. Joshua I Glaser & Bradley M Zamft & George M Church & Konrad P Kording, 2015. "Puzzle Imaging: Using Large-Scale Dimensionality Reduction Algorithms for Localization," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-23, July.
    4. Ho Ko & Sonja B. Hofer & Bruno Pichler & Katherine A. Buchanan & P. Jesper Sjöström & Thomas D. Mrsic-Flogel, 2011. "Functional specificity of local synaptic connections in neocortical networks," Nature, Nature, vol. 473(7345), pages 87-91, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bettina Voelcker & Ravi Pancholi & Simon Peron, 2022. "Transformation of primary sensory cortical representations from layer 4 to layer 2," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
    3. Christopher Ebsch & Robert Rosenbaum, 2018. "Imbalanced amplification: A mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-28, March.
    4. Gabriel Koch Ocker & Ashok Litwin-Kumar & Brent Doiron, 2015. "Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-40, August.
    5. Suchin S Gururangan & Alexander J Sadovsky & Jason N MacLean, 2014. "Analysis of Graph Invariants in Functional Neocortical Circuitry Reveals Generalized Features Common to Three Areas of Sensory Cortex," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    6. Joshua I Glaser & Bradley M Zamft & Adam H Marblestone & Jeffrey R Moffitt & Keith Tyo & Edward S Boyden & George Church & Konrad P Kording, 2013. "Statistical Analysis of Molecular Signal Recording," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-14, July.
    7. Takafumi Arakaki & G Barello & Yashar Ahmadian, 2019. "Inferring neural circuit structure from datasets of heterogeneous tuning curves," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-38, April.
    8. Dimitri Yatsenko & Krešimir Josić & Alexander S Ecker & Emmanouil Froudarakis & R James Cotton & Andreas S Tolias, 2015. "Improved Estimation and Interpretation of Correlations in Neural Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-28, March.
    9. Markus Helmer & Vladislav Kozyrev & Valeska Stephan & Stefan Treue & Theo Geisel & Demian Battaglia, 2016. "Model-Free Estimation of Tuning Curves and Their Attentional Modulation, Based on Sparse and Noisy Data," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-33, January.
    10. Jeyadarshan Jeyabalaratnam & Vishal Bharmauria & Lyes Bachatene & Sarah Cattan & Annie Angers & Stéphane Molotchnikoff, 2013. "Adaptation Shifts Preferred Orientation of Tuning Curve in the Mouse Visual Cortex," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.
    11. Pierre Yger & Kenneth D Harris, 2013. "The Convallis Rule for Unsupervised Learning in Cortical Networks," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-16, October.
    12. Molan Li & Da Li & Junxing Zhang & Xuanlu Xiang & Di Zhao, 2023. "Dynamics of Optimal Cue Integration with Time-Varying Delay in the Insects’ Navigation System," Mathematics, MDPI, vol. 11(17), pages 1-17, August.
    13. Bartul Mimica & Tuçe Tombaz & Claudia Battistin & Jingyi Guo Fuglstad & Benjamin A. Dunn & Jonathan R. Whitlock, 2023. "Behavioral decomposition reveals rich encoding structure employed across neocortex in rats," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    14. Ryan C Williamson & Benjamin R Cowley & Ashok Litwin-Kumar & Brent Doiron & Adam Kohn & Matthew A Smith & Byron M Yu, 2016. "Scaling Properties of Dimensionality Reduction for Neural Populations and Network Models," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-27, December.
    15. Sadra Sadeh & Stefan Rotter, 2015. "Orientation Selectivity in Inhibition-Dominated Networks of Spiking Neurons: Effect of Single Neuron Properties and Network Dynamics," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-17, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.