IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29030-z.html
   My bibliography  Save this article

Numerosity tuning in human association cortices and local image contrast representations in early visual cortex

Author

Listed:
  • Jacob M. Paul

    (Utrecht University
    University of Melbourne)

  • Martijn Ackooij

    (Utrecht University)

  • Tuomas C. Cate

    (Utrecht University)

  • Ben M. Harvey

    (Utrecht University)

Abstract

Human early visual cortex response amplitudes monotonically increase with numerosity (object number), regardless of object size and spacing. However, numerosity is typically considered a high-level visual or cognitive feature, while early visual responses follow image contrast in the spatial frequency domain. We find that, at fixed contrast, aggregate Fourier power (at all orientations and spatial frequencies) follows numerosity closely but nonlinearly with little effect of object size, spacing or shape. This would allow straightforward numerosity estimation from spatial frequency domain image representations. Using 7T fMRI, we show monotonic responses originate in primary visual cortex (V1) at the stimulus’s retinotopic location. Responses here and in neural network models follow aggregate Fourier power more closely than numerosity. Truly numerosity tuned responses emerge after lateral occipital cortex and are independent of retinotopic location. We propose numerosity’s straightforward perception and neural responses may result from the pervasive spatial frequency analyses of early visual processing.

Suggested Citation

  • Jacob M. Paul & Martijn Ackooij & Tuomas C. Cate & Ben M. Harvey, 2022. "Numerosity tuning in human association cortices and local image contrast representations in early visual cortex," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29030-z
    DOI: 10.1038/s41467-022-29030-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29030-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29030-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Franklin Satterthwaite, 1941. "Synthesis of variance," Psychometrika, Springer;The Psychometric Society, vol. 6(5), pages 309-316, October.
    2. Guido Marco Cicchini & Giovanni Anobile & David C. Burr, 2016. "Spontaneous perception of numerosity in humans," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    3. Shir Hofstetter & Yuxuan Cai & Ben M. Harvey & Serge O. Dumoulin, 2021. "Topographic maps representing haptic numerosity reveals distinct sensory representations in supramodal networks," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Ben M. Harvey & Serge O. Dumoulin, 2017. "A network of topographic numerosity maps in human association cortex," Nature Human Behaviour, Nature, vol. 1(2), pages 1-9, February.
    5. Kendrick N. Kay & Thomas Naselaris & Ryan J. Prenger & Jack L. Gallant, 2008. "Identifying natural images from human brain activity," Nature, Nature, vol. 452(7185), pages 352-355, March.
    6. Titia Gebuis & Bert Reynvoet, 2012. "The Role of Visual Information in Numerosity Estimation," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-5, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sébastien Czajko & Alexandre Vignaud & Evelyn Eger, 2024. "Human brain representations of internally generated outcomes of approximate calculation revealed by ultra-high-field brain imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Evi Hendrikx & Jacob M. Paul & Martijn Ackooij & Nathan Stoep & Ben M. Harvey, 2022. "Visual timing-tuned responses in human association cortices and response dynamics in early visual cortex," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Castaldi & Antonella Pomè & Guido Marco Cicchini & David Burr & Paola Binda, 2021. "The pupil responds spontaneously to perceived numerosity," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Sébastien Czajko & Alexandre Vignaud & Evelyn Eger, 2024. "Human brain representations of internally generated outcomes of approximate calculation revealed by ultra-high-field brain imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Evi Hendrikx & Jacob M. Paul & Martijn Ackooij & Nathan Stoep & Ben M. Harvey, 2022. "Visual timing-tuned responses in human association cortices and response dynamics in early visual cortex," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Lada, Emily K. & Wilson, James R., 2006. "A wavelet-based spectral procedure for steady-state simulation analysis," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1769-1801, November.
    5. Yuan, Ke-Hai & Chan, Wai, 2008. "Structural equation modeling with near singular covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4842-4858, June.
    6. Joseph Fleiss, 1970. "Estimating the reliability of interview data," Psychometrika, Springer;The Psychometric Society, vol. 35(2), pages 143-162, June.
    7. J. Davenport & J. Webster, 1975. "The Behrens-Fisher problem, an old solution revisited," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 22(1), pages 47-54, December.
    8. Zvi N. Roth & Kendrick Kay & Elisha P. Merriam, 2022. "Natural scene sampling reveals reliable coarse-scale orientation tuning in human V1," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Hamed Nili & Cai Wingfield & Alexander Walther & Li Su & William Marslen-Wilson & Nikolaus Kriegeskorte, 2014. "A Toolbox for Representational Similarity Analysis," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-11, April.
    10. Chiou, Paul, 1997. "Interval estimation of scale parameters following a pre-test for two exponential distributions," Computational Statistics & Data Analysis, Elsevier, vol. 23(4), pages 477-489, February.
    11. Hamed Nili & Alexander Walther & Arjen Alink & Nikolaus Kriegeskorte, 2020. "Inferring exemplar discriminability in brain representations," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
    12. Mikkel Helding Vembye & James Eric Pustejovsky & Therese Deocampo Pigott, 2023. "Power Approximations for Overall Average Effects in Meta-Analysis With Dependent Effect Sizes," Journal of Educational and Behavioral Statistics, , vol. 48(1), pages 70-102, February.
    13. Aryal, Subhash & Bhaumik, Dulal K. & Mathew, Thomas & Gibbons, Robert D., 2014. "An optimal test for variance components of multivariate mixed-effects linear models," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 166-178.
    14. Rodríguez, Julio & Ruiz Ortega, Esther, 2003. "A powerful test for conditional heteroscedasticity for financial time series with highly persistent volatilities," DES - Working Papers. Statistics and Econometrics. WS ws036716, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Kay H Brodersen & Thomas M Schofield & Alexander P Leff & Cheng Soon Ong & Ekaterina I Lomakina & Joachim M Buhmann & Klaas E Stephan, 2011. "Generative Embedding for Model-Based Classification of fMRI Data," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-19, June.
    16. Melisa Stevanovic & Samuel Tuhkanen & Milla Järvensivu & Emmi Koskinen & Camilla Lindholm & Jenny Paananen & Enikö Savander & Taina Valkeapää & Kaisa Valkiaranta, 2022. "Making Food Decisions Together: Physiological and Affective Underpinnings of Relinquishing Preferences and Reaching Decisions," SAGE Open, , vol. 12(1), pages 21582440221, February.
    17. Zhu, Fukang & Wang, Dehui, 2010. "Diagnostic checking integer-valued ARCH(p) models using conditional residual autocorrelations," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 496-508, February.
    18. Ming Bo Cai & Nicolas W Schuck & Jonathan W Pillow & Yael Niv, 2019. "Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-30, May.
    19. Mila Marinova & Delphine Sasanguie & Bert Reynvoet, 2018. "Symbolic estrangement or symbolic integration of numerals with quantities: Methodological pitfalls and a possible solution," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-22, July.
    20. Christiane B Wiebel-Herboth & Matti Krüger & Patricia Wollstadt, 2021. "Measuring inter- and intra-individual differences in visual scan patterns in a driving simulator experiment using active information storage," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-24, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29030-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.