Author
Listed:
- Fernando Siso-Nadal
- Jeffrey J Fox
- Stéphane A Laporte
- Terence E Hébert
- Peter S Swain
Abstract
Background: To control and manipulate cellular signaling, we need to understand cellular strategies for information transfer, integration, and decision-making. A key feature of signal transduction is the generation of only a few intracellular messengers by many extracellular stimuli. Methodology/Principal Findings: Here we model molecular cross-talk between two classic second messengers, cyclic AMP (cAMP) and calcium, and show that the dynamical complexity of the response of both messengers increases substantially through their interaction. In our model of a non-excitable cell, both cAMP and calcium concentrations can oscillate. If mutually inhibitory, cross-talk between the two second messengers can increase the range of agonist concentrations for which oscillations occur. If mutually activating, cross-talk decreases the oscillation range, but can generate ‘bursting’ oscillations of calcium and may enable better filtering of noise. Conclusion: We postulate that this increased dynamical complexity allows the cell to encode more information, particularly if both second messengers encode signals. In their native environments, it is unlikely that cells are exposed to one stimulus at a time, and cross-talk may help generate sufficiently complex responses to allow the cell to discriminate between different combinations and concentrations of extracellular agonists.
Suggested Citation
Fernando Siso-Nadal & Jeffrey J Fox & Stéphane A Laporte & Terence E Hébert & Peter S Swain, 2009.
"Cross-Talk between Signaling Pathways Can Generate Robust Oscillations in Calcium and cAMP,"
PLOS ONE, Public Library of Science, vol. 4(10), pages 1-10, October.
Handle:
RePEc:plo:pone00:0007189
DOI: 10.1371/journal.pone.0007189
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0007189. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.