IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004793.html
   My bibliography  Save this article

Noise Expands the Response Range of the Bacillus subtilis Competence Circuit

Author

Listed:
  • Andrew Mugler
  • Mark Kittisopikul
  • Luke Hayden
  • Jintao Liu
  • Chris H Wiggins
  • Gürol M Süel
  • Aleksandra M Walczak

Abstract

Gene regulatory circuits must contend with intrinsic noise that arises due to finite numbers of proteins. While some circuits act to reduce this noise, others appear to exploit it. A striking example is the competence circuit in Bacillus subtilis, which exhibits much larger noise in the duration of its competence events than a synthetically constructed analog that performs the same function. Here, using stochastic modeling and fluorescence microscopy, we show that this larger noise allows cells to exit terminal phenotypic states, which expands the range of stress levels to which cells are responsive and leads to phenotypic heterogeneity at the population level. This is an important example of how noise confers a functional benefit in a genetic decision-making circuit.Author Summary: Fluctuations, or “noise”, in the response of a system is usually thought to be harmful. However, it is becoming increasingly clear that in single-celled organisms, noise can sometimes help cells survive. This is because noise can enhance the diversity of responses within a cell population. In this study, we identify a novel benefit of noise in the competence response of a population of Bacillus subtilis bacteria, where competence is the ability of bacteria to take in DNA from their environment when under stress. We use computational modeling and experiments to show that noise increases the range of stress levels for which these bacteria exhibit a highly dynamic response, meaning that they are neither unresponsive, nor permanently in the competent state. Since a dynamic response is thought to be optimal for survival, this study suggests that noise is exploited to increase the fitness of the bacterial population.

Suggested Citation

  • Andrew Mugler & Mark Kittisopikul & Luke Hayden & Jintao Liu & Chris H Wiggins & Gürol M Süel & Aleksandra M Walczak, 2016. "Noise Expands the Response Range of the Bacillus subtilis Competence Circuit," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-21, March.
  • Handle: RePEc:plo:pcbi00:1004793
    DOI: 10.1371/journal.pcbi.1004793
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004793
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004793&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gürol M. Süel & Jordi Garcia-Ojalvo & Louisa M. Liberman & Michael B. Elowitz, 2006. "An excitable gene regulatory circuit induces transient cellular differentiation," Nature, Nature, vol. 440(7083), pages 545-550, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthieu Wyart & David Botstein & Ned S Wingreen, 2010. "Evaluating Gene Expression Dynamics Using Pairwise RNA FISH Data," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-14, November.
    2. Hiroyuki Kuwahara & Chris J Myers & Michael S Samoilov, 2010. "Temperature Control of Fimbriation Circuit Switch in Uropathogenic Escherichia coli: Quantitative Analysis via Automated Model Abstraction," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-22, March.
    3. Sandra H Dandach & Mustafa Khammash, 2010. "Analysis of Stochastic Strategies in Bacterial Competence: A Master Equation Approach," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-11, November.
    4. Karin Münch & Richard Münch & Rebekka Biedendieck & Dieter Jahn & Johannes Müller, 2019. "Evolutionary model for the unequal segregation of high copy plasmids," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-17, March.
    5. Payne, Joshua L., 2016. "No tradeoff between versatility and robustness in gene circuit motifs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 192-199.
    6. Ruoyu Luo & Lin Ye & Chenyang Tao & Kankan Wang, 2013. "Simulation of E. coli Gene Regulation including Overlapping Cell Cycles, Growth, Division, Time Delays and Noise," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-10, April.
    7. Marc Prudhomme & Calum H. G. Johnston & Anne-Lise Soulet & Anne Boyeldieu & David Lemos & Nathalie Campo & Patrice Polard, 2024. "Pneumococcal competence is a populational health sensor driving multilevel heterogeneity in response to antibiotics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Margaritis Voliotis & Philipp Thomas & Ramon Grima & Clive G Bowsher, 2016. "Stochastic Simulation of Biomolecular Networks in Dynamic Environments," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-18, June.
    9. Yu, Haiyan & Liu, Quansheng & Bi, Yuanhong, 2023. "Lévy noise-induced phase transition in p53 gene regulatory network near bifurcation points," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    10. Antrea Pavlou & Eugenio Cinquemani & Corinne Pinel & Nils Giordano & Van Melle-Gateau Mathilde & Irina Mihalcescu & Johannes Geiselmann & Hidde Jong, 2025. "Single-cell data reveal heterogeneity of investment in ribosomes across a bacterial population," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    11. Kazunari Mouri & Yasushi Sako, 2013. "Optimality Conditions for Cell-Fate Heterogeneity That Maximize the Effects of Growth Factors in PC12 Cells," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-15, November.
    12. Greg J Stephens & Bethany Johnson-Kerner & William Bialek & William S Ryu, 2008. "Dimensionality and Dynamics in the Behavior of C. elegans," PLOS Computational Biology, Public Library of Science, vol. 4(4), pages 1-10, April.
    13. Miles Miller & Marc Hafner & Eduardo Sontag & Noah Davidsohn & Sairam Subramanian & Priscilla E M Purnick & Douglas Lauffenburger & Ron Weiss, 2012. "Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-18, July.
    14. Cabrera Fernández, Juan Luis & Herrera-Almarza, Gioconda C. & Gutiérrez M., Esther D., 2018. "Chromosome progression and mitotic times behavior are mimicked by an stochastic unstable dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1121-1127.
    15. Zhao, Na & Liu, Haihong & Yan, Fang, 2020. "Oscillation dynamics of MeKS core module containing positive and negative feedback loops with time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    16. Song, Yi & Xu, Wei, 2021. "Asymmetric Lévy noise changed stability in a gene transcriptional regulatory system," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    17. Chen, Xiaoli & Wu, Fengyan & Duan, Jinqiao & Kurths, Jürgen & Li, Xiaofan, 2019. "Most probable dynamics of a genetic regulatory network under stable Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 425-436.
    18. Jiegen Wu & Baoqiang Chen & Yadi Liu & Liang Ma & Wen Huang & Yihan Lin, 2022. "Modulating gene regulation function by chemically controlled transcription factor clustering," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Benjamin B Kaufmann & Qiong Yang & Jerome T Mettetal & Alexander van Oudenaarden, 2007. "Heritable Stochastic Switching Revealed by Single-Cell Genealogy," PLOS Biology, Public Library of Science, vol. 5(9), pages 1-8, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.