IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004592.html
   My bibliography  Save this article

Learning of Chunking Sequences in Cognition and Behavior

Author

Listed:
  • Jordi Fonollosa
  • Emre Neftci
  • Mikhail Rabinovich

Abstract

We often learn and recall long sequences in smaller segments, such as a phone number 858 534 22 30 memorized as four segments. Behavioral experiments suggest that humans and some animals employ this strategy of breaking down cognitive or behavioral sequences into chunks in a wide variety of tasks, but the dynamical principles of how this is achieved remains unknown. Here, we study the temporal dynamics of chunking for learning cognitive sequences in a chunking representation using a dynamical model of competing modes arranged to evoke hierarchical Winnerless Competition (WLC) dynamics. Sequential memory is represented as trajectories along a chain of metastable fixed points at each level of the hierarchy, and bistable Hebbian dynamics enables the learning of such trajectories in an unsupervised fashion. Using computer simulations, we demonstrate the learning of a chunking representation of sequences and their robust recall. During learning, the dynamics associates a set of modes to each information-carrying item in the sequence and encodes their relative order. During recall, hierarchical WLC guarantees the robustness of the sequence order when the sequence is not too long. The resulting patterns of activities share several features observed in behavioral experiments, such as the pauses between boundaries of chunks, their size and their duration. Failures in learning chunking sequences provide new insights into the dynamical causes of neurological disorders such as Parkinson’s disease and Schizophrenia.Author Summary: Because chunking is a hallmark of the brain’s organization, efforts to understand its dynamics can provide valuable insights into the brain and its disorders. For identifying the dynamical principles of chunking learning, we hypothesize that perceptual sequences can be learned and stored as a chain of metastable fixed points in a low-dimensional dynamical system, similar to the trajectory of a ball rolling down a pinball machine. During a learning phase, the interactions in the network evolve such that the network learns a chunking representation of the sequence, as when memorizing a phone number in segments. In the example of the pinball machine, learning can be identified with the gradual placement of the pins. After learning, the pins are placed in a way that, at each run, the ball follows the same trajectory (recall of the same sequence) that encodes the perceptual sequence. Simulations show that the dynamics are endowed with the hallmarks of chunking observed in behavioral experiments, such as increased delays observed before loading new chunks.

Suggested Citation

  • Jordi Fonollosa & Emre Neftci & Mikhail Rabinovich, 2015. "Learning of Chunking Sequences in Cognition and Behavior," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-24, November.
  • Handle: RePEc:plo:pcbi00:1004592
    DOI: 10.1371/journal.pcbi.1004592
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004592
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004592&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004592?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.