IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0023873.html
   My bibliography  Save this article

Visual Working Memory Capacity Does Not Modulate the Feature-Based Information Filtering in Visual Working Memory

Author

Listed:
  • Jifan Zhou
  • Jun Yin
  • Tong Chen
  • Xiaowei Ding
  • Zaifeng Gao
  • Mowei Shen

Abstract

Background: The limited capacity of visual working memory (VWM) requires us to select the task relevant information and filter out the irrelevant information efficiently. Previous studies showed that the individual differences in VWM capacity dramatically influenced the way we filtered out the distracters displayed in distinct spatial-locations: low-capacity individuals were poorer at filtering them out than the high-capacity ones. However, when the target and distracting information pertain to the same object (i.e., multiple-featured object), whether the VWM capacity modulates the feature-based filtering remains unknown. Methodology/Principal Findings: We explored this issue mainly based on one of our recent studies, in which we asked the participants to remember three colors of colored-shapes or colored-landolt-Cs while using two types of task irrelevant information. We found that the irrelevant high-discriminable information could not be filtered out during the extraction of VWM but the irrelevant fine-grained information could be. We added 8 extra participants to the original 16 participants and then split the overall 24 participants into low- and high-VWM capacity groups. We found that regardless of the VWM capacity, the irrelevant high-discriminable information was selected into VWM, whereas the irrelevant fine-grained information was filtered out. The latter finding was further corroborated in a second experiment in which the participants were required to remember one colored-landolt-C and a more strict control was exerted over the VWM capacity. Conclusions/Significance: We conclude that VWM capacity did not modulate the feature-based filtering in VWM.

Suggested Citation

  • Jifan Zhou & Jun Yin & Tong Chen & Xiaowei Ding & Zaifeng Gao & Mowei Shen, 2011. "Visual Working Memory Capacity Does Not Modulate the Feature-Based Information Filtering in Visual Working Memory," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-10, September.
  • Handle: RePEc:plo:pone00:0023873
    DOI: 10.1371/journal.pone.0023873
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023873
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0023873&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0023873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven J. Luck & Edward K. Vogel, 1997. "The capacity of visual working memory for features and conjunctions," Nature, Nature, vol. 390(6657), pages 279-281, November.
    2. Edward K. Vogel & Maro G. Machizawa, 2004. "Neural activity predicts individual differences in visual working memory capacity," Nature, Nature, vol. 428(6984), pages 748-751, April.
    3. Edward K. Vogel & Andrew W. McCollough & Maro G. Machizawa, 2005. "Neural measures reveal individual differences in controlling access to working memory," Nature, Nature, vol. 438(7067), pages 500-503, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Zia Ul Haq Katshu & Giovanni d'Avossa, 2014. "Fine-Grained, Local Maps and Coarse, Global Representations Support Human Spatial Working Memory," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    2. Aki Kondo & Jun Saiki, 2012. "Feature-Specific Encoding Flexibility in Visual Working Memory," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-8, December.
    3. Carlo Baldassi & Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci & Marco Pirazzini, 2020. "A Behavioral Characterization of the Drift Diffusion Model and Its Multialternative Extension for Choice Under Time Pressure," Management Science, INFORMS, vol. 66(11), pages 5075-5093, November.
    4. S. Cerreia-Vioglio & F. Maccheroni & M. Marinacci & A. Rustichini, 2017. "Multinomial logit processes and preference discovery: inside and outside the black box," Working Papers 615, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    5. J David Timm & Frank Papenmeier, 2019. "Reorganization of spatial configurations in visual working memory: A matter of set size?," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-16, November.
    6. Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci, 2020. "Multinomial logit processes and preference discovery: outside and inside the black box," Working Papers 663, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    7. Shaiyan Keshvari & Ronald van den Berg & Wei Ji Ma, 2013. "No Evidence for an Item Limit in Change Detection," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-9, February.
    8. Krieger, Florian & Zimmer, Hubert D. & Greiff, Samuel & Spinath, Frank M. & Becker, Nicolas, 2019. "Why are difficult figural matrices hard to solve? The role of selective encoding and working memory capacity," Intelligence, Elsevier, vol. 72(C), pages 35-48.
    9. Pahor, Anja & Jaušovec, Norbert, 2017. "Multifaceted pattern of neural efficiency in working memory capacity," Intelligence, Elsevier, vol. 65(C), pages 23-34.
    10. Igor S. Utochkin & Vladislav A. Khvostov & Yulia M. Stakina, 2017. "Ensemble-Based Segmentation in the Perception of Multiple Feature Conjunctions," HSE Working papers WP BRP 78/PSY/2017, National Research University Higher School of Economics.
    11. Jastrzębski, Jan & Ciechanowska, Iwona & Chuderski, Adam, 2018. "The strong link between fluid intelligence and working memory cannot be explained away by strategy use," Intelligence, Elsevier, vol. 66(C), pages 44-53.
    12. Hongwei Tan & Sebastiaan van Dijken, 2023. "Dynamic machine vision with retinomorphic photomemristor-reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Robert W. Faff & Sebastian Kernbach, 2021. "A visualisation approach for pitching research," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(4), pages 5177-5197, December.
    14. Yuri A. Markov & Natalia A. Tiurina & Igor S. Utochkin, 2018. "Different features are stored independently in visual working memory but mediated by object-based representations," HSE Working papers WP BRP 101/PSY/2018, National Research University Higher School of Economics.
    15. Tullo, Domenico & Faubert, Jocelyn & Bertone, Armando, 2018. "The characterization of attention resource capacity and its relationship with fluid reasoning intelligence: A multiple object tracking study," Intelligence, Elsevier, vol. 69(C), pages 158-168.
    16. Nathaniel J. S. Ashby & Stephan Dickert & Andreas Glockner, 2012. "Focusing on what you own: Biased information uptake due to ownership," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 7(3), pages 254-267, May.
    17. Lior Fink & Daniele Papismedov, 2023. "On the Same Page? What Users Benefit from a Desktop View on Mobile Devices," Information Systems Research, INFORMS, vol. 34(2), pages 423-441, June.
    18. Li, Qian & Huang, Zhuowei (Joy) & Christianson, Kiel, 2016. "Visual attention toward tourism photographs with text: An eye-tracking study," Tourism Management, Elsevier, vol. 54(C), pages 243-258.
    19. Yuri A. Markov & Igor S. Utochkin, 2017. "The Effect of Object Distinctiveness on Object-Location Binding in Visual Working Memory," HSE Working papers WP BRP 79/PSY/2017, National Research University Higher School of Economics.
    20. Clark, Cameron M. & Lawlor-Savage, Linette & Goghari, Vina M., 2017. "Comparing brain activations associated with working memory and fluid intelligence," Intelligence, Elsevier, vol. 63(C), pages 66-77.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0023873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.