IDEAS home Printed from https://ideas.repec.org/p/hig/wpaper/79psy2017.html
   My bibliography  Save this paper

The Effect of Object Distinctiveness on Object-Location Binding in Visual Working Memory

Author

Listed:
  • Yuri A. Markov

    (National Research University Higher School of Economics)

  • Igor S. Utochkin

    (National Research University Higher School of Economics)

Abstract

Visual working memory (VWM) is prone to interference from individual items competing for its limited capacity. At least two sources of such interference can be described: poor between-item distinctiveness (an inability to discriminate between items sharing common features) and imperfect binding (a problem with determining which of the remembered features belonged to which object). Here we investigate the links between distinctiveness and binding in VWM. In Experiment 1, we tested how object distinctiveness affects object recognition memory and memory for object-location conjunctions. In Experiment 2, we compared object-location binding under high and low distinctiveness with memory for locations when binding is not required. Object recognition decreased with low object distinctiveness, while the precision and the number of stored locations did not depend on either distinctiveness or the need for binding. However, the proportion of object-location swaps increased as object distinctiveness decreased, which might be caused by forgetting of objects. In general, our data support the idea of relatively independent object and location representations in VWM, and the independence of memory distinction and binding

Suggested Citation

  • Yuri A. Markov & Igor S. Utochkin, 2017. "The Effect of Object Distinctiveness on Object-Location Binding in Visual Working Memory," HSE Working papers WP BRP 79/PSY/2017, National Research University Higher School of Economics.
  • Handle: RePEc:hig:wpaper:79psy2017
    as

    Download full text from publisher

    File URL: https://wp.hse.ru/data/2017/10/06/1159551605/79PSY2017.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weiwei Zhang & Steven J. Luck, 2008. "Discrete fixed-resolution representations in visual working memory," Nature, Nature, vol. 453(7192), pages 233-235, May.
    2. Yoni Pertzov & Mia Yuan Dong & Muy-Cheng Peich & Masud Husain, 2012. "Forgetting What Was Where: The Fragility of Object-Location Binding," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-12, October.
    3. Steven J. Luck & Edward K. Vogel, 1997. "The capacity of visual working memory for features and conjunctions," Nature, Nature, vol. 390(6657), pages 279-281, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuri A. Markov & Natalia A. Tiurina & Igor S. Utochkin, 2018. "Different features are stored independently in visual working memory but mediated by object-based representations," HSE Working papers WP BRP 101/PSY/2018, National Research University Higher School of Economics.
    2. J David Timm & Frank Papenmeier, 2019. "Reorganization of spatial configurations in visual working memory: A matter of set size?," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-16, November.
    3. Shaiyan Keshvari & Ronald van den Berg & Wei Ji Ma, 2013. "No Evidence for an Item Limit in Change Detection," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-9, February.
    4. Ken McAnally & Russell Martin, 2016. "Modelling Visual Change Detection and Identification under Free Viewing Conditions," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-16, February.
    5. Jack Phu & Michael Kalloniatis & Sieu K Khuu, 2016. "The Effect of Attentional Cueing and Spatial Uncertainty in Visual Field Testing," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-18, March.
    6. Haggar Cohen-Dallal & Isaac Fradkin & Yoni Pertzov, 2018. "Are stronger memories forgotten more slowly? No evidence that memory strength influences the rate of forgetting," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-18, July.
    7. Loic Matthey & Paul M Bays & Peter Dayan, 2015. "A Probabilistic Palimpsest Model of Visual Short-term Memory," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-34, January.
    8. Mohammad Zia Ul Haq Katshu & Giovanni d'Avossa, 2014. "Fine-Grained, Local Maps and Coarse, Global Representations Support Human Spatial Working Memory," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    9. Igor S. Utochkin & Vladislav A. Khvostov & Yulia M. Stakina, 2017. "Ensemble-Based Segmentation in the Perception of Multiple Feature Conjunctions," HSE Working papers WP BRP 78/PSY/2017, National Research University Higher School of Economics.
    10. Jastrzębski, Jan & Ciechanowska, Iwona & Chuderski, Adam, 2018. "The strong link between fluid intelligence and working memory cannot be explained away by strategy use," Intelligence, Elsevier, vol. 66(C), pages 44-53.
    11. Aki Kondo & Jun Saiki, 2012. "Feature-Specific Encoding Flexibility in Visual Working Memory," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-8, December.
    12. Hongwei Tan & Sebastiaan van Dijken, 2023. "Dynamic machine vision with retinomorphic photomemristor-reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Robert W. Faff & Sebastian Kernbach, 2021. "A visualisation approach for pitching research," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(4), pages 5177-5197, December.
    14. Tullo, Domenico & Faubert, Jocelyn & Bertone, Armando, 2018. "The characterization of attention resource capacity and its relationship with fluid reasoning intelligence: A multiple object tracking study," Intelligence, Elsevier, vol. 69(C), pages 158-168.
    15. Jifan Zhou & Jun Yin & Tong Chen & Xiaowei Ding & Zaifeng Gao & Mowei Shen, 2011. "Visual Working Memory Capacity Does Not Modulate the Feature-Based Information Filtering in Visual Working Memory," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-10, September.
    16. Nathaniel J. S. Ashby & Stephan Dickert & Andreas Glockner, 2012. "Focusing on what you own: Biased information uptake due to ownership," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 7(3), pages 254-267, May.
    17. Lior Fink & Daniele Papismedov, 2023. "On the Same Page? What Users Benefit from a Desktop View on Mobile Devices," Information Systems Research, INFORMS, vol. 34(2), pages 423-441, June.
    18. Li, Qian & Huang, Zhuowei (Joy) & Christianson, Kiel, 2016. "Visual attention toward tourism photographs with text: An eye-tracking study," Tourism Management, Elsevier, vol. 54(C), pages 243-258.
    19. Carlo Baldassi & Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci & Marco Pirazzini, 2020. "A Behavioral Characterization of the Drift Diffusion Model and Its Multialternative Extension for Choice Under Time Pressure," Management Science, INFORMS, vol. 66(11), pages 5075-5093, November.
    20. S. Cerreia-Vioglio & F. Maccheroni & M. Marinacci & A. Rustichini, 2017. "Multinomial logit processes and preference discovery: inside and outside the black box," Working Papers 615, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.

    More about this item

    Keywords

    visual working memory; distinctiveness; object-location binding; swap errors; binding problem;
    All these keywords.

    JEL classification:

    • Z - Other Special Topics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hig:wpaper:79psy2017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Shamil Abdulaev or Shamil Abdulaev (email available below). General contact details of provider: https://edirc.repec.org/data/hsecoru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.