IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v460y2009i7252d10.1038_nature08112.html
   My bibliography  Save this article

Adaptive prediction of environmental changes by microorganisms

Author

Listed:
  • Amir Mitchell

    (Weizmann Institute of Science Rehovot 76100)

  • Gal H. Romano

    (Tel Aviv University, Tel Aviv 69978, Israel)

  • Bella Groisman

    (Weizmann Institute of Science Rehovot 76100)

  • Avihu Yona

    (Weizmann Institute of Science Rehovot 76100)

  • Erez Dekel

    (Weizmann Institute of Science Rehovot 76100)

  • Martin Kupiec

    (Tel Aviv University, Tel Aviv 69978, Israel)

  • Orna Dahan

    (Weizmann Institute of Science Rehovot 76100)

  • Yitzhak Pilpel

    (Weizmann Institute of Science Rehovot 76100
    Harvard Medical School, Boston, Massachusetts 02115, USA)

Abstract

Natural habitats of some microorganisms may fluctuate erratically, whereas others, which are more predictable, offer the opportunity to prepare in advance for the next environmental change. In analogy to classical Pavlovian conditioning, microorganisms may have evolved to anticipate environmental stimuli by adapting to their temporal order of appearance. Here we present evidence for environmental change anticipation in two model microorganisms, Escherichia coli and Saccharomyces cerevisiae. We show that anticipation is an adaptive trait, because pre-exposure to the stimulus that typically appears early in the ecology improves the organism’s fitness when encountered with a second stimulus. Additionally, we observe loss of the conditioned response in E. coli strains that were repeatedly exposed in a laboratory evolution experiment only to the first stimulus. Focusing on the molecular level reveals that the natural temporal order of stimuli is embedded in the wiring of the regulatory network—early stimuli pre-induce genes that would be needed for later ones, yet later stimuli only induce genes needed to cope with them. Our work indicates that environmental anticipation is an adaptive trait that was repeatedly selected for during evolution and thus may be ubiquitous in biology.

Suggested Citation

  • Amir Mitchell & Gal H. Romano & Bella Groisman & Avihu Yona & Erez Dekel & Martin Kupiec & Orna Dahan & Yitzhak Pilpel, 2009. "Adaptive prediction of environmental changes by microorganisms," Nature, Nature, vol. 460(7252), pages 220-224, July.
  • Handle: RePEc:nat:nature:v:460:y:2009:i:7252:d:10.1038_nature08112
    DOI: 10.1038/nature08112
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature08112
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature08112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sébastien Boyer & Lucas Hérissant & Gavin Sherlock, 2021. "Adaptation is influenced by the complexity of environmental change during evolution in a dynamic environment," PLOS Genetics, Public Library of Science, vol. 17(1), pages 1-27, January.
    2. Peter A. Corning, 2014. "Systems Theory and the Role of Synergy in the Evolution of Living Systems," Systems Research and Behavioral Science, Wiley Blackwell, vol. 31(2), pages 181-196, March.
    3. David A Sivak & Matt Thomson, 2014. "Environmental Statistics and Optimal Regulation," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-12, September.
    4. Alexander Tschantz & Anil K Seth & Christopher L Buckley, 2020. "Learning action-oriented models through active inference," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-30, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:460:y:2009:i:7252:d:10.1038_nature08112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.