IDEAS home Printed from https://ideas.repec.org/a/gam/jchals/v10y2019i1p26-d219626.html
   My bibliography  Save this article

Mathematical Modeling of The Challenge to Detect Pancreatic Adenocarcinoma Early with Biomarkers

Author

Listed:
  • Alex Root

    (Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA)

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor type and is usually detected at late stage. Here, mathematical modeling is used to assess the feasibility of two-step early detection with biomarkers, followed by confirmatory imaging. A one-compartment model of biomarker concentration in blood was parameterized and analyzed. Tumor growth models were generated from two competing genomic evolution models: gradual tumor evolution and punctuated equilibrium. When a biomarker is produced by the tumor at moderate-to-high secretion rates, both evolutionary models indicate that early detection with a blood-based biomarker is feasible and can occur approximately one and a half years before the limit of detection by imaging. Early detection with a blood-based biomarker is at the borderline of clinical utility when biomarker secretion rates by the tumor are an order of magnitude lower and the fraction of biomarker entering the blood is also lower by an order of magntidue. Regardless of whether tumor evolutionary dynamics follow the gradual model or punctuated equilibrium model, the uncertainty in production and clearance rates of molecular biomarkers is a major knowledge gap, and despite significant measurement challenges, should be a priority for the field. The findings of this study provide caution regarding the feasibility of early detection of pancreatic cancer with blood-based biomarkers and challenge the community to measure biomarker production and clearance rates.

Suggested Citation

  • Alex Root, 2019. "Mathematical Modeling of The Challenge to Detect Pancreatic Adenocarcinoma Early with Biomarkers," Challenges, MDPI, vol. 10(1), pages 1-15, April.
  • Handle: RePEc:gam:jchals:v:10:y:2019:i:1:p:26-:d:219626
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2078-1547/10/1/26/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2078-1547/10/1/26/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soetaert, Karline & Petzoldt, Thomas & Setzer, R. Woodrow, 2010. "Solving Differential Equations in R: Package deSolve," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i09).
    2. James J Lee & Justin Huang & Christopher G England & Lacey R McNally & Hermann B Frieboes, 2013. "Predictive Modeling of In Vivo Response to Gemcitabine in Pancreatic Cancer," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-9, September.
    3. Sébastien Benzekry & Clare Lamont & Afshin Beheshti & Amanda Tracz & John M L Ebos & Lynn Hlatky & Philip Hahnfeldt, 2014. "Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatima-Zahra Jaouimaa & Daniel Dempsey & Suzanne Van Osch & Stephen Kinsella & Kevin Burke & Jason Wyse & James Sweeney, 2021. "An age-structured SEIR model for COVID-19 incidence in Dublin, Ireland with framework for evaluating health intervention cost," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-25, December.
    2. Belém Barbosa & José Ramón Saura & Dag Bennett, 2024. "How do entrepreneurs perform digital marketing across the customer journey? A review and discussion of the main uses," The Journal of Technology Transfer, Springer, vol. 49(1), pages 69-103, February.
    3. Overstall, Antony M. & Woods, David C. & Martin, Kieran J., 2019. "Bayesian prediction for physical models with application to the optimization of the synthesis of pharmaceutical products using chemical kinetics," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 126-142.
    4. Serrouya, R. & Dickie, M. & DeMars, C. & Wittmann, M.J. & Boutin, S., 2020. "Predicting the effects of restoring linear features on woodland caribou populations," Ecological Modelling, Elsevier, vol. 416(C).
    5. Ahmed, Najma & Shah, Nehad Ali & Taherifar, Somaye & Zaman, F.D., 2021. "Memory effects and of the killing rate on the tumor cells concentration for a one-dimensional cancer model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Zadoki Tabo & Chester Kalinda & Lutz Breuer & Christian Albrecht, 2023. "Adapting Strategies for Effective Schistosomiasis Prevention: A Mathematical Modeling Approach," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    7. Moore, Christopher M. & Catella, Samantha A. & Abbott, Karen C., 2018. "Population dynamics of mutualism and intraspecific density dependence: How θ-logistic density dependence affects mutualistic positive feedback," Ecological Modelling, Elsevier, vol. 368(C), pages 191-197.
    8. Cabrales, Luis Enrique Bergues & Montijano, Juan I. & Schonbek, Maria & Castañeda, Antonio Rafael Selva, 2018. "A viscous modified Gompertz model for the analysis of the kinetics of tumors under electrochemical therapy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 151(C), pages 96-110.
    9. Yan, Chuan & Zhang, Zhibin, 2018. "Dome-shaped transition between positive and negative interactions maintains higher persistence and biomass in more complex ecological networks," Ecological Modelling, Elsevier, vol. 370(C), pages 14-21.
    10. Cécile Cathalot & Erwan G. Roussel & Antoine Perhirin & Vanessa Creff & Jean-Pierre Donval & Vivien Guyader & Guillaume Roullet & Jonathan Gula & Christian Tamburini & Marc Garel & Anne Godfroy & Pier, 2021. "Hydrothermal plumes as hotspots for deep-ocean heterotrophic microbial biomass production," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Lamonica, Dominique & Herbach, Ulysse & Orias, Frédéric & Clément, Bernard & Charles, Sandrine & Lopes, Christelle, 2016. "Mechanistic modelling of daphnid-algae dynamics within a laboratory microcosm," Ecological Modelling, Elsevier, vol. 320(C), pages 213-230.
    12. Stahl, Gerhard & Wang, Shaohui & Wendt, Markus, 2011. "Validate Correlation of an ESG: Treasury Yields across," Hannover Economic Papers (HEP) dp-476, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    13. Bulai, I.M. & De Bonis, M.C. & Laurita, C. & Sagaria, V., 2023. "Modeling metastatic tumor evolution, numerical resolution and growth prediction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 721-740.
    14. Chevallier, Damien & Mourrain, Baptiste & Girondot, Marc, 2020. "Modelling leatherback biphasic indeterminate growth using a modified Gompertz equation," Ecological Modelling, Elsevier, vol. 426(C).
    15. Diane Lefaudeux & Supriya Sen & Kevin Jiang & Alexander Hoffmann, 2022. "Kinetics of mRNA nuclear export regulate innate immune response gene expression," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Jessica A Lee & Siavash Riazi & Shahla Nemati & Jannell V Bazurto & Andreas E Vasdekis & Benjamin J Ridenhour & Christopher H Remien & Christopher J Marx, 2019. "Microbial phenotypic heterogeneity in response to a metabolic toxin: Continuous, dynamically shifting distribution of formaldehyde tolerance in Methylobacterium extorquens populations," PLOS Genetics, Public Library of Science, vol. 15(11), pages 1-38, November.
    17. Turner, Rolf & Banerjee, Pradeep & Shahlori, Rayomand, 2014. "Optimal Asset Pricing," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i11).
    18. Carturan, Bruno S. & Siewe, Nourridine & Cobbold, Christina A. & Tyson, Rebecca C., 2023. "Bumble bee pollination and the wildflower/crop trade-off: When do wildflower enhancements improve crop yield?," Ecological Modelling, Elsevier, vol. 484(C).
    19. Charalambos Loizides & Demetris Iacovides & Marios M Hadjiandreou & Gizem Rizki & Achilleas Achilleos & Katerina Strati & Georgios D Mitsis, 2015. "Model-Based Tumor Growth Dynamics and Therapy Response in a Mouse Model of De Novo Carcinogenesis," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-18, December.
    20. Yerin Jung & Yoonsub Kim & Hwi-Soo Seol & Jong-Hyeon Lee & Jung-Hwan Kwon, 2021. "Spatial Uncertainty in Modeling Inhalation Exposure to Volatile Organic Compounds in Response to the Application of Consumer Spray Products," IJERPH, MDPI, vol. 18(10), pages 1-11, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jchals:v:10:y:2019:i:1:p:26-:d:219626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.