IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0200148.html
   My bibliography  Save this article

Consolidated mathematical growth model of the primary tumor and secondary distant metastases of breast cancer (CoMPaS)

Author

Listed:
  • Ella Ya Tyuryumina
  • Alexey A Neznanov

Abstract

The goal of this research is to improve the accuracy of predicting the breast cancer (BC) process using the original mathematical model referred to as CoMPaS. The CoMPaS is the original mathematical model and the corresponding software built by modelling the natural history of the primary tumor (PT) and secondary distant metastases (MTS), it reflects the relations between the PT and MTS. The CoMPaS is based on an exponential growth model and consists of a system of determinate nonlinear and linear equations and corresponds to the TNM classification. It allows us to calculate the different growth periods of PT and MTS: 1) a non-visible period for PT, 2) a non-visible period for MTS, and 3) a visible period for MTS. The CoMPaS has been validated using 10-year and 15-year survival clinical data considering tumor stage and PT diameter. The following are calculated by CoMPaS: 1) the number of doublings for the non-visible and visible growth periods of MTS and 2) the tumor volume doubling time (days) for the non-visible and visible growth periods of MTS. The diameters of the PT and secondary distant MTS increased simultaneously. In other words, the non-visible growth period of the secondary distant MTS shrinks, leading to a decrease of the survival of patients with breast cancer. The CoMPaS correctly describes the growth of the PT for patients at the T1aN0M0, T1bN0M0, T1cN0M0, T2N0M0 and T3N0M0 stages, who does not have MTS in the lymph nodes (N0). Additionally, the CoMPaS helps to consider the appearance and evolution period of secondary distant MTS (M1). The CoMPaS correctly describes the growth period of PT corresponding to BC classification (parameter T), the growth period of secondary distant MTS and the 10-15-year survival of BC patients considering the BC stage (parameter M).

Suggested Citation

  • Ella Ya Tyuryumina & Alexey A Neznanov, 2018. "Consolidated mathematical growth model of the primary tumor and secondary distant metastases of breast cancer (CoMPaS)," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-16, July.
  • Handle: RePEc:plo:pone00:0200148
    DOI: 10.1371/journal.pone.0200148
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200148
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0200148&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0200148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sébastien Benzekry & Clare Lamont & Afshin Beheshti & Amanda Tracz & John M L Ebos & Lynn Hlatky & Philip Hahnfeldt, 2014. "Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Najma & Shah, Nehad Ali & Taherifar, Somaye & Zaman, F.D., 2021. "Memory effects and of the killing rate on the tumor cells concentration for a one-dimensional cancer model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Cabrales, Luis Enrique Bergues & Montijano, Juan I. & Schonbek, Maria & Castañeda, Antonio Rafael Selva, 2018. "A viscous modified Gompertz model for the analysis of the kinetics of tumors under electrochemical therapy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 151(C), pages 96-110.
    3. Bulai, I.M. & De Bonis, M.C. & Laurita, C. & Sagaria, V., 2023. "Modeling metastatic tumor evolution, numerical resolution and growth prediction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 721-740.
    4. Alex Root, 2019. "Mathematical Modeling of The Challenge to Detect Pancreatic Adenocarcinoma Early with Biomarkers," Challenges, MDPI, vol. 10(1), pages 1-15, April.
    5. Charalambos Loizides & Demetris Iacovides & Marios M Hadjiandreou & Gizem Rizki & Achilleas Achilleos & Katerina Strati & Georgios D Mitsis, 2015. "Model-Based Tumor Growth Dynamics and Therapy Response in a Mouse Model of De Novo Carcinogenesis," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-18, December.
    6. Hamzeh Zureigat & Mohammed Al-Smadi & Areen Al-Khateeb & Shrideh Al-Omari & Sharifah Alhazmi, 2023. "Numerical Solution for Fuzzy Time-Fractional Cancer Tumor Model with a Time-Dependent Net Killing Rate of Cancer Cells," IJERPH, MDPI, vol. 20(4), pages 1-13, February.
    7. Gregory Baramidze & Victoria Baramidze & Ying Xu, 2021. "Mathematical model and computational scheme for multi-phase modeling of cellular population and microenvironmental dynamics in soft tissue," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-31, November.
    8. Pelayo Martínez-Fernández & Zulima Fernández-Muñiz & Ana Cernea & Juan Luis Fernández-Martínez & Andrzej Kloczkowski, 2023. "Three Mathematical Models for COVID-19 Prediction," Mathematics, MDPI, vol. 11(3), pages 1-16, January.
    9. Marcia Cruz-Correa & Elba C. Díaz-Toro & Jorge L. Falcón & Enid J. García-Rivera & Humberto M. Guiot & Wanda T. Maldonado-Dávila & Karen G. Martínez & William Méndez-Latalladi & Cynthia M. Pérez & Myr, 2020. "Public Health Academic Alliance for COVID-19 Response: The Role of a National Medical Task Force in Puerto Rico," IJERPH, MDPI, vol. 17(13), pages 1-14, July.
    10. Rodrigues, D.S. & Mancera, P.F.A. & Carvalho, T. & Gonçalves, L.F., 2019. "A mathematical model for chemoimmunotherapy of chronic lymphocytic leukemia," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 118-133.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0200148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.