IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003498.html
   My bibliography  Save this article

Model-Based Analysis for Qualitative Data: An Application in Drosophila Germline Stem Cell Regulation

Author

Listed:
  • Michael Pargett
  • Ann E Rundell
  • Gregery T Buzzard
  • David M Umulis

Abstract

Discovery in developmental biology is often driven by intuition that relies on the integration of multiple types of data such as fluorescent images, phenotypes, and the outcomes of biochemical assays. Mathematical modeling helps elucidate the biological mechanisms at play as the networks become increasingly large and complex. However, the available data is frequently under-utilized due to incompatibility with quantitative model tuning techniques. This is the case for stem cell regulation mechanisms explored in the Drosophila germarium through fluorescent immunohistochemistry. To enable better integration of biological data with modeling in this and similar situations, we have developed a general parameter estimation process to quantitatively optimize models with qualitative data. The process employs a modified version of the Optimal Scaling method from social and behavioral sciences, and multi-objective optimization to evaluate the trade-off between fitting different datasets (e.g. wild type vs. mutant). Using only published imaging data in the germarium, we first evaluated support for a published intracellular regulatory network by considering alternative connections of the same regulatory players. Simply screening networks against wild type data identified hundreds of feasible alternatives. Of these, five parsimonious variants were found and compared by multi-objective analysis including mutant data and dynamic constraints. With these data, the current model is supported over the alternatives, but support for a biochemically observed feedback element is weak (i.e. these data do not measure the feedback effect well). When also comparing new hypothetical models, the available data do not discriminate. To begin addressing the limitations in data, we performed a model-based experiment design and provide recommendations for experiments to refine model parameters and discriminate increasingly complex hypotheses.Author Summary: We developed a process to quantitatively fit mathematical models using qualitative data, and applied it in the study of how stem cells are regulated in the fruit fly ovary. The available published data we collected are fluorescent images of protein and mRNA expression from genetic experiments. Despite lacking quantitative data, the new process makes available quantitative model analysis techniques to reliably compare different models and guide future experiments. We found that the current consensus regulatory model is supported, but that the data are indeed insufficient to address more complex hypotheses. With the quantitatively fit models, we evaluated hypothetical experiments and estimated which future measurements should best refine or test models. The model fitting process we have developed is applicable to many biological studies where qualitative data are common, and can accelerate progress through more efficient experimentation.

Suggested Citation

  • Michael Pargett & Ann E Rundell & Gregery T Buzzard & David M Umulis, 2014. "Model-Based Analysis for Qualitative Data: An Application in Drosophila Germline Stem Cell Regulation," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-18, March.
  • Handle: RePEc:plo:pcbi00:1003498
    DOI: 10.1371/journal.pcbi.1003498
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003498
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003498&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Forrest Young, 1981. "Quantitative analysis of qualitative data," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 357-388, December.
    2. Michel Tenenhaus & Forrest Young, 1985. "An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 91-119, March.
    3. Ralph A. Neumüller & Joerg Betschinger & Anja Fischer & Natascha Bushati & Ingrid Poernbacher & Karl Mechtler & Stephen M. Cohen & Juergen A. Knoblich, 2008. "Mei-P26 regulates microRNAs and cell growth in the Drosophila ovarian stem cell lineage," Nature, Nature, vol. 454(7201), pages 241-245, July.
    4. Xiaomeng Wang & Robin E. Harris & Laura J. Bayston & Hilary L. Ashe, 2008. "Type IV collagens regulate BMP signalling in Drosophila," Nature, Nature, vol. 455(7209), pages 72-77, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naomichi Makino, 2015. "Generalized data-fitting factor analysis with multiple quantification of categorical variables," Computational Statistics, Springer, vol. 30(1), pages 279-292, March.
    2. Jan Leeuw, 1988. "Multivariate analysis with linearizable regressions," Psychometrika, Springer;The Psychometric Society, vol. 53(4), pages 437-454, December.
    3. Eeke Burg & Jan Leeuw & Renée Verdegaal, 1988. "Homogeneity analysis withk sets of variables: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 53(2), pages 177-197, June.
    4. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    5. Gardner, Sugnet & Gower, John C. & le Roux, N.J., 2006. "A synthesis of canonical variate analysis, generalised canonical correlation and Procrustes analysis," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 107-134, January.
    6. Sara Casacci & Adriano Pareto, 2018. "Subjective Indicators Construction by Distance Indices: An Application to Life Satisfaction Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 137(3), pages 831-846, June.
    7. K. Fernández-Aguirre & M. Garín-Martín & J. Modroño-Herrán, 2014. "Visual displays: analytical study and applications to graphs and real data," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(4), pages 2209-2224, July.
    8. Takayuki Saito & Tatsuo Otsu, 1988. "A method of optimal scaling for multivariate ordinal data and its extensions," Psychometrika, Springer;The Psychometric Society, vol. 53(1), pages 5-25, March.
    9. Kim, Jung Seek & Ratchford, Brian T., 2013. "A Bayesian multivariate probit for ordinal data with semiparametric random-effects," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 192-208.
    10. Saudi-Yulieth Enciso-Alfaro & Víctor Amor-Esteban & Tânia-Cristina Azevedo & Isabel-María García-Sánchez, 2023. "Multivariate Analysis of Clean Technologies in Agricultural and Livestock Companies in Castilla y León," Agriculture, MDPI, vol. 13(11), pages 1-25, November.
    11. Vartan Choulakian, 1988. "Exploratory analysis of contingency tables by loglinear formulation and generalizations of correspondence analysis," Psychometrika, Springer;The Psychometric Society, vol. 53(2), pages 235-250, June.
    12. Antonello D’Ambra & Pietro Amenta & Anna Crisci & Antonio Lucadamo, 2022. "The generalized Taguchi’s statistic: a passenger satisfaction evaluation," METRON, Springer;Sapienza Università di Roma, vol. 80(1), pages 41-60, April.
    13. van Rosmalen, J.M. & Koning, A.J. & Groenen, P.J.F., 2007. "Optimal Scaling of Interaction Effects in Generalized Linear Models," Econometric Institute Research Papers EI 2007-44, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Núñez-Serrano, Juan A. & Turrión, Jaime & Velázquez, Francisco J., 2014. "Are stars a good indicator of hotel quality? Assymetric information and regulatory heterogeneity in Spain," Tourism Management, Elsevier, vol. 42(C), pages 77-87.
    15. Michailidis, George & de Leeuw, Jan, 2000. "Multilevel homogeneity analysis with differential weighting," Computational Statistics & Data Analysis, Elsevier, vol. 32(3-4), pages 411-442, January.
    16. Fabio Humberto Sepúlveda Murillo & Jorge Chica Olmo & Norely Margarita Soto Builes, 2019. "Spatial Variability Analysis of Quality of Life and Its Determinants: A Case Study of Medellín, Colombia," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(3), pages 1233-1256, August.
    17. S.M. Shen & Y.L. Lai, 2001. "Handling incomplete Quality-of-Life Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 55(2), pages 121-166, August.
    18. Thioulouse, Jean & Chevenet, Francois, 1996. "NetMul, a World-Wide Web user interface for multivariate analysis software," Computational Statistics & Data Analysis, Elsevier, vol. 21(3), pages 369-372, March.
    19. Jisu Yoon & Stephan Klasen, 2018. "An Application of Partial Least Squares to the Construction of the Social Institutions and Gender Index (SIGI) and the Corruption Perception Index (CPI)," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 138(1), pages 61-88, July.
    20. Obradović, Tena & Vlačić, Božidar & Dabić, Marina, 2021. "Open innovation in the manufacturing industry: A review and research agenda," Technovation, Elsevier, vol. 102(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.