IDEAS home Printed from https://ideas.repec.org/a/spr/metron/v80y2022i1d10.1007_s40300-021-00202-z.html
   My bibliography  Save this article

The generalized Taguchi’s statistic: a passenger satisfaction evaluation

Author

Listed:
  • Antonello D’Ambra

    (University of Campania “L. Vanvitelli”)

  • Pietro Amenta

    (University of Sannio)

  • Anna Crisci

    (University of Naples “Federico II”)

  • Antonio Lucadamo

    (University of Sannio)

Abstract

Judgments are usually expressed in ordinal scale and the main aim of this analysis is to identify characteristics that affect the satisfaction. Taguchi’s and Hirotsu’s statistics are simple alternatives to Pearson’s Chi-squared test for contingency tables with ordered categorical variables. A different approach is developed in this paper. In particular, a new measure of the association between a nominal explanatory variable and an ordered categorical response variable is introduced. The new measure is called Generalized Cumulative Chi-Squared Statistic (GCCS) and a class of GCCS-type statistics is also introduced. Moreover, a generalized singular value decomposition of GCCS is provided and an empirical study is developed. A study on the evaluation of the passengers’ satisfaction is performed on a strategy based on the conjoint use of the Generalized Taguchi’s statistic and the Logistic Model. An optimal combination of factors and levels has been obtained to improve service quality.

Suggested Citation

  • Antonello D’Ambra & Pietro Amenta & Anna Crisci & Antonio Lucadamo, 2022. "The generalized Taguchi’s statistic: a passenger satisfaction evaluation," METRON, Springer;Sapienza Università di Roma, vol. 80(1), pages 41-60, April.
  • Handle: RePEc:spr:metron:v:80:y:2022:i:1:d:10.1007_s40300-021-00202-z
    DOI: 10.1007/s40300-021-00202-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40300-021-00202-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40300-021-00202-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hensher, David A. & Stopher, Peter & Bullock, Philip, 2003. "Service quality--developing a service quality index in the provision of commercial bus contracts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(6), pages 499-517, July.
    2. Antonio Lucadamo & Pietro Amenta, 2015. "A proposal for handling ordinal categorical variables in co-inertia analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(12), pages 2631-2638, December.
    3. R. Bradley & S. Katti & Irma Coons, 1962. "Optimal scaling for ordered categories," Psychometrika, Springer;The Psychometric Society, vol. 27(4), pages 355-374, December.
    4. Luigi D'Ambra & Onur Koksoy & Biagio Simonetti, 2009. "Cumulative correspondence analysis of ordered categorical data from industrial experiments," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(12), pages 1315-1328.
    5. Jan Leeuw & Forrest Young & Yoshio Takane, 1976. "Additive structure in qualitative data: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 41(4), pages 471-503, December.
    6. A. Fielding, 1993. "Scoring functions for ordered classifications in statistical analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 27(1), pages 1-17, February.
    7. Michel Tenenhaus & Forrest Young, 1985. "An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 91-119, March.
    8. Yitzhaki, Shlomo, 1982. "Stochastic Dominance, Mean Variance, and Gini's Mean Difference," American Economic Review, American Economic Association, vol. 72(1), pages 178-185, March.
    9. Luigi D’Ambra & Pietro Amenta & Antonello D’Ambra, 2018. "Decomposition of cumulative chi-squared statistics, with some new tools for their interpretation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 297-318, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonello D’Ambra & Pietro Amenta & Eric J. Beh, 2021. "Confidence regions and other tools for an extension of correspondence analysis based on cumulative frequencies," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 405-429, September.
    2. Takayuki Saito & Tatsuo Otsu, 1988. "A method of optimal scaling for multivariate ordinal data and its extensions," Psychometrika, Springer;The Psychometric Society, vol. 53(1), pages 5-25, March.
    3. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    4. Sarker, Rumana Islam & Kaplan, Sigal & Mailer, Markus & Timmermans, Harry J.P., 2019. "Applying affective event theory to explain transit users’ reactions to service disruptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 593-605.
    5. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    6. Concepcion Roman & Juan Carlos Martin & Raquel Espino, 2011. "Using Stated Preferences (Sp) To Analyze The Service Quality Of Public Transport," ERSA conference papers ersa11p86, European Regional Science Association.
    7. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    8. Jiannan Lu & Peng Ding & Tirthankar Dasgupta, 2018. "Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 540-567, October.
    9. Chica-Olmo, Jorge & Gachs-Sánchez, Héctor & Lizarraga, Carmen, 2018. "Route effect on the perception of public transport services quality," Transport Policy, Elsevier, vol. 67(C), pages 40-48.
    10. González-Díaz, Manuel & Montoro-Sánchez, Ángeles, 2011. "Some lessons from incentive theory: Promoting quality in bus transport," Transport Policy, Elsevier, vol. 18(2), pages 299-306, March.
    11. Jaroslav Burian & Lenka Zajíčková & Igor Ivan & Karel Macků, 2018. "Attitudes and Motivation to Use Public or Individual Transport: A Case Study of Two Middle-Sized Cities," Social Sciences, MDPI, vol. 7(6), pages 1-25, May.
    12. Denstadli, Jon Martin & Julsrud, Tom Erik & Christiansen, Petter, 2017. "Urban commuting – A threat to the work-family balance?," Journal of Transport Geography, Elsevier, vol. 61(C), pages 87-94.
    13. Redman, Lauren & Friman, Margareta & Gärling, Tommy & Hartig, Terry, 2013. "Quality attributes of public transport that attract car users: A research review," Transport Policy, Elsevier, vol. 25(C), pages 119-127.
    14. Lucadamo, Antonio & Camminatiello, Ida & D'Ambra, Antonello, 2021. "A statistical model for evaluating the patient satisfaction," Socio-Economic Planning Sciences, Elsevier, vol. 73(C).
    15. Magalhães, David José Ahouagi Vaz de & Rivera-Gonzalez, Carlos, 2021. "Car users’ attitudes towards an enhanced bus system to mitigate urban congestion in a developing country," Transport Policy, Elsevier, vol. 110(C), pages 452-464.
    16. Walter Murray & Howard Shek, 2012. "A local relaxation method for the cardinality constrained portfolio optimization problem," Computational Optimization and Applications, Springer, vol. 53(3), pages 681-709, December.
    17. Epstein, Bryan & Givoni, Moshe, 2016. "Analyzing the gap between the QOS demanded by PT users and QOS supplied by service operators," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 622-637.
    18. Naomichi Makino, 2015. "Generalized data-fitting factor analysis with multiple quantification of categorical variables," Computational Statistics, Springer, vol. 30(1), pages 279-292, March.
    19. Mulley, Corinne & Clifton, Geoffrey Tilden & Balbontin, Camila & Ma, Liang, 2017. "Information for travelling: Awareness and usage of the various sources of information available to public transport users in NSW," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 111-132.
    20. Zahra Navidi & Nicole Ronald & Stephan Winter, 2018. "Comparison between ad-hoc demand responsive and conventional transit: a simulation study," Public Transport, Springer, vol. 10(1), pages 147-167, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metron:v:80:y:2022:i:1:d:10.1007_s40300-021-00202-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.