IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003091.html
   My bibliography  Save this article

The Ability of Flux Balance Analysis to Predict Evolution of Central Metabolism Scales with the Initial Distance to the Optimum

Author

Listed:
  • William R Harcombe
  • Nigel F Delaney
  • Nicholas Leiby
  • Niels Klitgord
  • Christopher J Marx

Abstract

The most powerful genome-scale framework to model metabolism, flux balance analysis (FBA), is an evolutionary optimality model. It hypothesizes selection upon a proposed optimality criterion in order to predict the set of internal fluxes that would maximize fitness. Here we present a direct test of the optimality assumption underlying FBA by comparing the central metabolic fluxes predicted by multiple criteria to changes measurable by a 13C-labeling method for experimentally-evolved strains. We considered datasets for three Escherichia coli evolution experiments that varied in their length, consistency of environment, and initial optimality. For ten populations that were evolved for 50,000 generations in glucose minimal medium, we observed modest changes in relative fluxes that led to small, but significant decreases in optimality and increased the distance to the predicted optimal flux distribution. In contrast, seven populations evolved on the poor substrate lactate for 900 generations collectively became more optimal and had flux distributions that moved toward predictions. For three pairs of central metabolic knockouts evolved on glucose for 600–800 generations, there was a balance between cases where optimality and flux patterns moved toward or away from FBA predictions. Despite this variation in predictability of changes in central metabolism, two generalities emerged. First, improved growth largely derived from evolved increases in the rate of substrate use. Second, FBA predictions bore out well for the two experiments initiated with ancestors with relatively sub-optimal yield, whereas those begun already quite optimal tended to move somewhat away from predictions. These findings suggest that the tradeoff between rate and yield is surprisingly modest. The observed positive correlation between rate and yield when adaptation initiated further from the optimum resulted in the ability of FBA to use stoichiometric constraints to predict the evolution of metabolism despite selection for rate.Author Summary: The most common method of modeling genome-scale metabolism, flux balance analysis, involves using known stoichiometry to define feasible metabolic states and then choosing between these states by proposing that evolution has selected a metabolic flux that optimizes fitness. But does evolution optimize metabolism, and if so, what component of metabolism equates to fitness? We directly tested the underlying assumption of stoichiometric optimality by comparing predicted flux distributions with changes in fluxes that occurred following experimental evolution. Across three experiments ranging in length from a few hundred to fifty thousand generations, we found that substrate uptake – an input to the model – always increased, but supposed optimality criteria such as yield only increased sometimes. Despite this, there was a clear trend. Highly optimal ancestors evolved slightly lower yield in the course of increasing the overall rate, whereas more sub-optimal strains were able to increase both. These results suggest that flux balance analysis is capable of predicting either the initial metabolic behavior of strains or how they will evolve, but not both.

Suggested Citation

  • William R Harcombe & Nigel F Delaney & Nicholas Leiby & Niels Klitgord & Christopher J Marx, 2013. "The Ability of Flux Balance Analysis to Predict Evolution of Central Metabolism Scales with the Initial Distance to the Optimum," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-11, June.
  • Handle: RePEc:plo:pcbi00:1003091
    DOI: 10.1371/journal.pcbi.1003091
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003091
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003091&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erez Dekel & Uri Alon, 2005. "Optimality and evolutionary tuning of the expression level of a protein," Nature, Nature, vol. 436(7050), pages 588-592, July.
    2. Christian Frezza & Liang Zheng & Ori Folger & Kartik N. Rajagopalan & Elaine D. MacKenzie & Livnat Jerby & Massimo Micaroni & Barbara Chaneton & Julie Adam & Ann Hedley & Gabriela Kalna & Ian P. M. To, 2011. "Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase," Nature, Nature, vol. 477(7363), pages 225-228, September.
    3. Rafael U. Ibarra & Jeremy S. Edwards & Bernhard O. Palsson, 2002. "Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth," Nature, Nature, vol. 420(6912), pages 186-189, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicholas Leiby & Christopher J Marx, 2014. "Metabolic Erosion Primarily Through Mutation Accumulation, and Not Tradeoffs, Drives Limited Evolution of Substrate Specificity in Escherichia coli," PLOS Biology, Public Library of Science, vol. 12(2), pages 1-10, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    2. Zihan Wang & Akshit Goyal & Veronika Dubinkina & Ashish B. George & Tong Wang & Yulia Fridman & Sergei Maslov, 2021. "Complementary resource preferences spontaneously emerge in diauxic microbial communities," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. André Schultz & Amina A Qutub, 2016. "Reconstruction of Tissue-Specific Metabolic Networks Using CORDA," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-33, March.
    4. David A Sivak & Matt Thomson, 2014. "Environmental Statistics and Optimal Regulation," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-12, September.
    5. Ruoyu Luo & Lin Ye & Chenyang Tao & Kankan Wang, 2013. "Simulation of E. coli Gene Regulation including Overlapping Cell Cycles, Growth, Division, Time Delays and Noise," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-10, April.
    6. Marcelo Rivas-Astroza & Raúl Conejeros, 2020. "Metabolic flux configuration determination using information entropy," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-19, December.
    7. Marlous Kamp & Jakub Surmacki & Marc Segarra Mondejar & Tim Young & Karolina Chrabaszcz & Fadwa Joud & Vincent Zecchini & Alyson Speed & Christian Frezza & Sarah E. Bohndiek, 2024. "Raman micro-spectroscopy reveals the spatial distribution of fumarate in cells and tissues," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Umberto Lucia & Giulia Grisolia, 2018. "Cyanobacteria and Microalgae : Thermoeconomic Considerations in Biofuel Production," Energies, MDPI, vol. 11(1), pages 1-16, January.
    9. Rok Grah & Tamar Friedlander, 2020. "The relation between crosstalk and gene regulation form revisited," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-24, February.
    10. Markus J Herrgård & Stephen S Fong & Bernhard Ø Palsson, 2006. "Identification of Genome-Scale Metabolic Network Models Using Experimentally Measured Flux Profiles," PLOS Computational Biology, Public Library of Science, vol. 2(7), pages 1-11, July.
    11. de Oliveira, Viviane M. & Amado, André & Campos, Paulo R.A., 2018. "The interplay of tradeoffs within the framework of a resource-based modelling," Ecological Modelling, Elsevier, vol. 384(C), pages 249-260.
    12. Héctor García Martín & Vinay Satish Kumar & Daniel Weaver & Amit Ghosh & Victor Chubukov & Aindrila Mukhopadhyay & Adam Arkin & Jay D Keasling, 2015. "A Method to Constrain Genome-Scale Models with 13C Labeling Data," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-34, September.
    13. Thuy N. Nguyen & Christine Ingle & Samuel Thompson & Kimberly A. Reynolds, 2024. "The genetic landscape of a metabolic interaction," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Iván Domenzain & Benjamín Sánchez & Mihail Anton & Eduard J. Kerkhoven & Aarón Millán-Oropeza & Céline Henry & Verena Siewers & John P. Morrissey & Nikolaus Sonnenschein & Jens Nielsen, 2022. "Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Robert Planqué & Josephus Hulshof & Bas Teusink & Johannes C Hendriks & Frank J Bruggeman, 2018. "Maintaining maximal metabolic flux by gene expression control," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-20, September.
    16. Matthew N Benedict & Michael B Mundy & Christopher S Henry & Nicholas Chia & Nathan D Price, 2014. "Likelihood-Based Gene Annotations for Gap Filling and Quality Assessment in Genome-Scale Metabolic Models," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-14, October.
    17. Claudio Altafini & Giuseppe Facchetti, 2015. "Metabolic Adaptation Processes That Converge to Optimal Biomass Flux Distributions," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-13, September.
    18. Liang-Yu Nieh & Frederic Y.-H. Chen & Hsin-Wei Jung & Kuan-Yu Su & Chao-Yin Tsuei & Chun-Ting Lin & Yue-Qi Lee & James C. Liao, 2024. "Evolutionary engineering of methylotrophic E. coli enables fast growth on methanol," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    19. Andras Gyorgy, 2023. "Competition and evolutionary selection among core regulatory motifs in gene expression control," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Lucia, Umberto, 2012. "Irreversibility in biophysical and biochemical engineering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5997-6007.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.