IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43327-7.html
   My bibliography  Save this article

Competition and evolutionary selection among core regulatory motifs in gene expression control

Author

Listed:
  • Andras Gyorgy

    (New York University Abu Dhabi)

Abstract

Gene products that are beneficial in one environment may become burdensome in another, prompting the emergence of diverse regulatory schemes that carry their own bioenergetic cost. By ensuring that regulators are only expressed when needed, we demonstrate that autoregulation generally offers an advantage in an environment combining mutation and time-varying selection. Whether positive or negative feedback emerges as dominant depends primarily on the demand for the target gene product, typically to ensure that the detrimental impact of inevitable mutations is minimized. While self-repression of the regulator curbs the spread of these loss-of-function mutations, self-activation instead facilitates their propagation. By analyzing the transcription network of multiple model organisms, we reveal that reduced bioenergetic cost may contribute to the preferential selection of autoregulation among transcription factors. Our results not only uncover how seemingly equivalent regulatory motifs have fundamentally different impact on population structure, growth dynamics, and evolutionary outcomes, but they can also be leveraged to promote the design of evolutionarily robust synthetic gene circuits.

Suggested Citation

  • Andras Gyorgy, 2023. "Competition and evolutionary selection among core regulatory motifs in gene expression control," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43327-7
    DOI: 10.1038/s41467-023-43327-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43327-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43327-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leland H. Hartwell & John J. Hopfield & Stanislas Leibler & Andrew W. Murray, 1999. "From molecular to modular cell biology," Nature, Nature, vol. 402(6761), pages 47-52, December.
    2. Zhenglong Gu & Lars M. Steinmetz & Xun Gu & Curt Scharfe & Ronald W. Davis & Wen-Hsiung Li, 2003. "Role of duplicate genes in genetic robustness against null mutations," Nature, Nature, vol. 421(6918), pages 63-66, January.
    3. Roberto Di Blasi & Mara Pisani & Fabiana Tedeschi & Masue M. Marbiah & Karen Polizzi & Simone Furini & Velia Siciliano & Francesca Ceroni, 2023. "Resource-aware construct design in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Chelsea Y. Hu & Richard M. Murray, 2022. "Layered feedback control overcomes performance trade-off in synthetic biomolecular networks," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Arthur Prindle & Phillip Samayoa & Ivan Razinkov & Tal Danino & Lev S. Tsimring & Jeff Hasty, 2012. "A sensing array of radically coupled genetic ‘biopixels’," Nature, Nature, vol. 481(7379), pages 39-44, January.
    6. Mehrose Ahmad & Hannah Prensky & Jacqueline Balestrieri & Shahd ElNaggar & Angela Gomez-Simmonds & Anne-Catrin Uhlemann & Beth Traxler & Abhyudai Singh & Allison J. Lopatkin, 2023. "Tradeoff between lag time and growth rate drives the plasmid acquisition cost," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Shivang Hina-Nilesh Joshi & Chentao Yong & Andras Gyorgy, 2022. "Inducible plasmid copy number control for synthetic biology in commonly used E. coli strains," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Duncan Ingram & Guy-Bart Stan, 2023. "Publisher Correction: Modelling genetic stability in engineered cell populations," Nature Communications, Nature, vol. 14(1), pages 1-1, December.
    9. Andras Gyorgy & Amor Menezes & Murat Arcak, 2023. "A blueprint for a synthetic genetic feedback optimizer," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Andrew H. Ng & Taylor H. Nguyen & Mariana Gómez-Schiavon & Galen Dods & Robert A. Langan & Scott E. Boyken & Jennifer A. Samson & Lucas M. Waldburger & John E. Dueber & David Baker & Hana El-Samad, 2020. "Publisher Correction: Modular and tunable biological feedback control using a de novo protein switch," Nature, Nature, vol. 579(7798), pages 8-8, March.
    11. Timothy Frei & Federica Cella & Fabiana Tedeschi & Joaquín Gutiérrez & Guy-Bart Stan & Mustafa Khammash & Velia Siciliano, 2020. "Characterization and mitigation of gene expression burden in mammalian cells," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    12. Shakked O. Halperin & Connor J. Tou & Eric B. Wong & Cyrus Modavi & David V. Schaffer & John E. Dueber, 2018. "CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window," Nature, Nature, vol. 560(7717), pages 248-252, August.
    13. Rafael U. Ibarra & Jeremy S. Edwards & Bernhard O. Palsson, 2002. "Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth," Nature, Nature, vol. 420(6912), pages 186-189, November.
    14. Attila Becskei & Luis Serrano, 2000. "Engineering stability in gene networks by autoregulation," Nature, Nature, vol. 405(6786), pages 590-593, June.
    15. Alexander P. S. Darlington & Juhyun Kim & José I. Jiménez & Declan G. Bates, 2018. "Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    16. Maurice Filo & Sant Kumar & Mustafa Khammash, 2022. "A hierarchy of biomolecular proportional-integral-derivative feedback controllers for robust perfect adaptation and dynamic performance," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Simeon D. Castle & Claire S. Grierson & Thomas E. Gorochowski, 2021. "Towards an engineering theory of evolution," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    18. Duncan Ingram & Guy-Bart Stan, 2023. "Modelling genetic stability in engineered cell populations," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Stephanie K. Aoki & Gabriele Lillacci & Ankit Gupta & Armin Baumschlager & David Schweingruber & Mustafa Khammash, 2019. "A universal biomolecular integral feedback controller for robust perfect adaptation," Nature, Nature, vol. 570(7762), pages 533-537, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirill Sechkar & Harrison Steel & Giansimone Perrino & Guy-Bart Stan, 2024. "A coarse-grained bacterial cell model for resource-aware analysis and design of synthetic gene circuits," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Simeon D. Castle & Michiel Stock & Thomas E. Gorochowski, 2024. "Engineering is evolution: a perspective on design processes to engineer biology," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yuanli Gao & Lei Wang & Baojun Wang, 2023. "Customizing cellular signal processing by synthetic multi-level regulatory circuits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Stanislav Anastassov & Maurice Filo & Ching-Hsiang Chang & Mustafa Khammash, 2023. "A cybergenetic framework for engineering intein-mediated integral feedback control systems," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    6. Carlos Barajas & Hsin-Ho Huang & Jesse Gibson & Luis Sandoval & Domitilla Vecchio, 2022. "Feedforward growth rate control mitigates gene activation burden," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Shunsuke Kawasaki & Hiroki Ono & Moe Hirosawa & Takeru Kuwabara & Shunsuke Sumi & Suji Lee & Knut Woltjen & Hirohide Saito, 2023. "Programmable mammalian translational modulators by CRISPR-associated proteins," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Cencetti, Giulia & Battiston, Federico & Carletti, Timoteo & Fanelli, Duccio, 2020. "Generalized patterns from local and non local reactions," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    10. Nicola Bellomo & Richard Bingham & Mark A.J. Chaplain & Giovanni Dosi & Guido Forni & Damian A. Knopoff & John Lowengrub & Reidun Twarock & Maria Enrica Virgillito, 2020. "A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world," LEM Papers Series 2020/16, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    11. Roberto Di Blasi & Mara Pisani & Fabiana Tedeschi & Masue M. Marbiah & Karen Polizzi & Simone Furini & Velia Siciliano & Francesca Ceroni, 2023. "Resource-aware construct design in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Lazaros K Gallos & Fabricio Q Potiguar & José S Andrade Jr & Hernan A Makse, 2013. "IMDB Network Revisited: Unveiling Fractal and Modular Properties from a Typical Small-World Network," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    13. Chen Jia & Ramon Grima, 2024. "Holimap: an accurate and efficient method for solving stochastic gene network dynamics," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. T. Ochiai & J. C. Nacher, 2007. "Stochastic analysis of autoregulatory gene expression dynamics," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 14(4), pages 377-388, November.
    15. Kyung H Kim & Herbert M Sauro, 2012. "Adjusting Phenotypes by Noise Control," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-14, January.
    16. Qing-Ju Jiao & Yan-Kai Zhang & Lu-Ning Li & Hong-Bin Shen, 2011. "BinTree Seeking: A Novel Approach to Mine Both Bi-Sparse and Cohesive Modules in Protein Interaction Networks," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-12, November.
    17. Manfred Füllsack, 2011. "Firstness - As seen from the perspective of Complexity Research," E-LOGOS, Prague University of Economics and Business, vol. 2011(1), pages 1-19.
    18. Shivang Hina-Nilesh Joshi & Chentao Yong & Andras Gyorgy, 2022. "Inducible plasmid copy number control for synthetic biology in commonly used E. coli strains," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Anna Zimmermann & Julian E. Prieto-Vivas & Charlotte Cautereels & Anton Gorkovskiy & Jan Steensels & Yves Peer & Kevin J. Verstrepen, 2023. "A Cas3-base editing tool for targetable in vivo mutagenesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Alexander Anders & Bhaswar Ghosh & Timo Glatter & Victor Sourjik, 2020. "Design of a MAPK signalling cascade balances energetic cost versus accuracy of information transmission," Nature Communications, Nature, vol. 11(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43327-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.