IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002892.html
   My bibliography  Save this article

Membrane Sculpting by F-BAR Domains Studied by Molecular Dynamics Simulations

Author

Listed:
  • Hang Yu
  • Klaus Schulten

Abstract

Interplay between cellular membranes and their peripheral proteins drives many processes in eukaryotic cells. Proteins of the Bin/Amphiphysin/Rvs (BAR) domain family, in particular, play a role in cellular morphogenesis, for example curving planar membranes into tubular membranes. However, it is still unclear how F-BAR domain proteins act on membranes. Electron microscopy revealed that, in vitro, F-BAR proteins form regular lattices on cylindrically deformed membrane surfaces. Using all-atom and coarse-grained (CG) molecular dynamics simulations, we show that such lattices, indeed, induce tubes of observed radii. A 250 ns all-atom simulation reveals that F-BAR domain curves membranes via the so-called scaffolding mechanism. Plasticity of the F-BAR domain permits conformational change in response to membrane interaction, via partial unwinding of the domains 3-helix bundle structure. A CG simulation covering more than 350 µs provides a dynamic picture of membrane tubulation by lattices of F-BAR domains. A series of CG simulations identified the optimal lattice type for membrane sculpting, which matches closely the lattices seen through cryo-electron microscopy. Author Summary: To generate organelles, eukaryotic cells sculpt their membranes into compartments, often employing proteins as chaperones, for example, F-BAR domains. The latter induce formation of tubular and vesicular membranes. Functional and structural studies suggest that F-BAR domains sculpt membranes through electrostatic interactions, driving the membrane to match the concave surface of the protein's banana-like shape. Cryo-electron microscopy (cryo-EM) studies provide an average static picture of how F-BAR domains form lattices on the surface of membranes to induce tube formation. Complementing the cryo-EM images, molecular dynamics simulations reported here offer a detailed, dynamic picture of membrane tubulation by a lattice of F-BAR domains and identified lattice types optimally attuned to producing high membrane curvature. The simulations reproduced also a process lasting 350 µs in which lattices of F-BAR domains form a complete tube out of an initially flat membrane. The molecular dynamics study offers, thereby, both a large-scale picture of membrane sculpting by F-BAR domain lattices as well as atomic-level dynamic information about the involvement of the individual F-BAR domain and its interactions with partner F-BAR domains and membrane in the sculpting process.

Suggested Citation

  • Hang Yu & Klaus Schulten, 2013. "Membrane Sculpting by F-BAR Domains Studied by Molecular Dynamics Simulations," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-15, January.
  • Handle: RePEc:plo:pcbi00:1002892
    DOI: 10.1371/journal.pcbi.1002892
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002892
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002892&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harvey T. McMahon & Jennifer L. Gallop, 2005. "Membrane curvature and mechanisms of dynamic cell membrane remodelling," Nature, Nature, vol. 438(7068), pages 590-596, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wonchul Shin & Ben Zucker & Nidhi Kundu & Sung Hoon Lee & Bo Shi & Chung Yu Chan & Xiaoli Guo & Jonathan T. Harrison & Jaymie Moore Turechek & Jenny E. Hinshaw & Michael M. Kozlov & Ling-Gang Wu, 2022. "Molecular mechanics underlying flat-to-round membrane budding in live secretory cells," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Fabian Höglsperger & Bart E. Vos & Arne D. Hofemeier & Maximilian D. Seyfried & Bastian Stövesand & Azadeh Alavizargar & Leon Topp & Andreas Heuer & Timo Betz & Bart Jan Ravoo, 2023. "Rapid and reversible optical switching of cell membrane area by an amphiphilic azobenzene," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Ewa Sitarska & Silvia Dias Almeida & Marianne Sandvold Beckwith & Julian Stopp & Jakub Czuchnowski & Marc Siggel & Rita Roessner & Aline Tschanz & Christer Ejsing & Yannick Schwab & Jan Kosinski & Mic, 2023. "Sensing their plasma membrane curvature allows migrating cells to circumvent obstacles," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Fanlong Wang & Xianbi Li & Yujie Li & Jing Han & Yang Chen & Jianyan Zeng & Mei Su & Jingxin Zhuo & Hui Ren & Haoru Liu & Lei Hou & Yanhua Fan & Xingying Yan & Shuiqing Song & Juan Zhao & Dan Jin & Mi, 2021. "Arabidopsis P4 ATPase-mediated cell detoxification confers resistance to Fusarium graminearum and Verticillium dahliae," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    5. Rower, David A. & Atzberger, Paul J., 2023. "Coarse-grained methods for heterogeneous vesicles with phase-separated domains: Elastic mechanics of shape fluctuations, plate compression, and channel insertion," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 342-361.
    6. J.I. Pavlič & T. Mareš & J. Bešter & V. Janša & M. Daniel & A. Iglič, 2009. "Encapsulation of small spherical liposome into larger flaccid liposome induced by human plasma proteins," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 12(2), pages 147-150.
    7. R A Barrio & Tomas Alarcon & A Hernandez-Machado, 2020. "The dynamics of shapes of vesicle membranes with time dependent spontaneous curvature," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-11, January.
    8. Alan K. Okada & Kazuki Teranishi & Mark R. Ambroso & Jose Mario Isas & Elena Vazquez-Sarandeses & Joo-Yeun Lee & Arthur Alves Melo & Priyatama Pandey & Daniel Merken & Leona Berndt & Michael Lammers &, 2021. "Lysine acetylation regulates the interaction between proteins and membranes," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Raviv Dharan & Yuwei Huang & Sudheer Kumar Cheppali & Shahar Goren & Petr Shendrik & Weisi Wang & Jiamei Qiao & Michael M. Kozlov & Li Yu & Raya Sorkin, 2023. "Tetraspanin 4 stabilizes membrane swellings and facilitates their maturation into migrasomes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.