IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v209y2023icp342-361.html
   My bibliography  Save this article

Coarse-grained methods for heterogeneous vesicles with phase-separated domains: Elastic mechanics of shape fluctuations, plate compression, and channel insertion

Author

Listed:
  • Rower, David A.
  • Atzberger, Paul J.

Abstract

We develop coarse-grained particle approaches for studying the elastic mechanics of vesicles with heterogeneous membranes having phase-separated domains. We perform simulations both of passive shape fluctuations and of active systems where vesicles are subjected to compression between two plates or subjected to insertion into narrow channels. Analysis methods are developed for mapping particle configurations to continuum fields with spherical harmonics representations. Heterogeneous vesicles are found to exhibit rich behaviors where the heterogeneity can amplify surface two-point correlations, reduce resistance during compression, and augment vesicle transport times in channels. The developed methods provide general approaches for characterizing the mechanics of coarse-grained heterogeneous systems taking into account the roles of thermal fluctuations, geometry, and phase separation.

Suggested Citation

  • Rower, David A. & Atzberger, Paul J., 2023. "Coarse-grained methods for heterogeneous vesicles with phase-separated domains: Elastic mechanics of shape fluctuations, plate compression, and channel insertion," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 342-361.
  • Handle: RePEc:eee:matcom:v:209:y:2023:i:c:p:342-361
    DOI: 10.1016/j.matcom.2023.02.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423000939
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.02.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prerna Sharma & Andrew Ward & T. Gibaud & Michael F. Hagan & Zvonimir Dogic, 2014. "Hierarchical organization of chiral rafts in colloidal membranes," Nature, Nature, vol. 513(7516), pages 77-80, September.
    2. Tobias Baumgart & Samuel T. Hess & Watt W. Webb, 2003. "Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension," Nature, Nature, vol. 425(6960), pages 821-824, October.
    3. Harvey T. McMahon & Jennifer L. Gallop, 2005. "Membrane curvature and mechanisms of dynamic cell membrane remodelling," Nature, Nature, vol. 438(7068), pages 590-596, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wonchul Shin & Ben Zucker & Nidhi Kundu & Sung Hoon Lee & Bo Shi & Chung Yu Chan & Xiaoli Guo & Jonathan T. Harrison & Jaymie Moore Turechek & Jenny E. Hinshaw & Michael M. Kozlov & Ling-Gang Wu, 2022. "Molecular mechanics underlying flat-to-round membrane budding in live secretory cells," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Barg, Michael C. & Mangum, Amanda J., 2019. "A phase separation problem and geodesic disks on Cassinian oval surfaces," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 192-205.
    3. Shuxu Wang & Louis Kang & Péter Salamon & Xiang Wang & Noriyuki Uchida & Fumito Araoka & Takuzo Aida & Zvonimir Dogic & Yasuhiro Ishida, 2024. "Stimuli-responsive self-regulating assembly of chiral colloids for robust size and shape control," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Fabian Höglsperger & Bart E. Vos & Arne D. Hofemeier & Maximilian D. Seyfried & Bastian Stövesand & Azadeh Alavizargar & Leon Topp & Andreas Heuer & Timo Betz & Bart Jan Ravoo, 2023. "Rapid and reversible optical switching of cell membrane area by an amphiphilic azobenzene," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Zhao, Shubo & Xiao, Xufeng & Feng, Xinlong, 2020. "An efficient time adaptivity based on chemical potential for surface Cahn–Hilliard equation using finite element approximation," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    6. Nebojsa Jukic & Alma P. Perrino & Frédéric Humbert & Aurélien Roux & Simon Scheuring, 2022. "Snf7 spirals sense and alter membrane curvature," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Ewa Sitarska & Silvia Dias Almeida & Marianne Sandvold Beckwith & Julian Stopp & Jakub Czuchnowski & Marc Siggel & Rita Roessner & Aline Tschanz & Christer Ejsing & Yannick Schwab & Jan Kosinski & Mic, 2023. "Sensing their plasma membrane curvature allows migrating cells to circumvent obstacles," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Fanlong Wang & Xianbi Li & Yujie Li & Jing Han & Yang Chen & Jianyan Zeng & Mei Su & Jingxin Zhuo & Hui Ren & Haoru Liu & Lei Hou & Yanhua Fan & Xingying Yan & Shuiqing Song & Juan Zhao & Dan Jin & Mi, 2021. "Arabidopsis P4 ATPase-mediated cell detoxification confers resistance to Fusarium graminearum and Verticillium dahliae," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    9. María Reverte-López & Nishu Kanwa & Yusuf Qutbuddin & Viktoriia Belousova & Marion Jasnin & Petra Schwille, 2024. "Self-organized spatial targeting of contractile actomyosin rings for synthetic cell division," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. J.I. Pavlič & T. Mareš & J. Bešter & V. Janša & M. Daniel & A. Iglič, 2009. "Encapsulation of small spherical liposome into larger flaccid liposome induced by human plasma proteins," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 12(2), pages 147-150.
    11. R A Barrio & Tomas Alarcon & A Hernandez-Machado, 2020. "The dynamics of shapes of vesicle membranes with time dependent spontaneous curvature," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-11, January.
    12. Alan K. Okada & Kazuki Teranishi & Mark R. Ambroso & Jose Mario Isas & Elena Vazquez-Sarandeses & Joo-Yeun Lee & Arthur Alves Melo & Priyatama Pandey & Daniel Merken & Leona Berndt & Michael Lammers &, 2021. "Lysine acetylation regulates the interaction between proteins and membranes," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    13. Raviv Dharan & Yuwei Huang & Sudheer Kumar Cheppali & Shahar Goren & Petr Shendrik & Weisi Wang & Jiamei Qiao & Michael M. Kozlov & Li Yu & Raya Sorkin, 2023. "Tetraspanin 4 stabilizes membrane swellings and facilitates their maturation into migrasomes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:209:y:2023:i:c:p:342-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.