IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002592.html
   My bibliography  Save this article

Individual Rules for Trail Pattern Formation in Argentine Ants (Linepithema humile)

Author

Listed:
  • Andrea Perna
  • Boris Granovskiy
  • Simon Garnier
  • Stamatios C Nicolis
  • Marjorie Labédan
  • Guy Theraulaz
  • Vincent Fourcassié
  • David J T Sumpter

Abstract

We studied the formation of trail patterns by Argentine ants exploring an empty arena. Using a novel imaging and analysis technique we estimated pheromone concentrations at all spatial positions in the experimental arena and at different times. Then we derived the response function of individual ants to pheromone concentrations by looking at correlations between concentrations and changes in speed or direction of the ants. Ants were found to turn in response to local pheromone concentrations, while their speed was largely unaffected by these concentrations. Ants did not integrate pheromone concentrations over time, with the concentration of pheromone in a 1 cm radius in front of the ant determining the turning angle. The response to pheromone was found to follow a Weber's Law, such that the difference between quantities of pheromone on the two sides of the ant divided by their sum determines the magnitude of the turning angle. This proportional response is in apparent contradiction with the well-established non-linear choice function used in the literature to model the results of binary bridge experiments in ant colonies (Deneubourg et al. 1990). However, agent based simulations implementing the Weber's Law response function led to the formation of trails and reproduced results reported in the literature. We show analytically that a sigmoidal response, analogous to that in the classical Deneubourg model for collective decision making, can be derived from the individual Weber-type response to pheromone concentrations that we have established in our experiments when directional noise around the preferred direction of movement of the ants is assumed. Author Summary: Many ant species produce large dendritic networks of trails around their nest. These networks result from self-organized feedback mechanisms: ants leave small amounts of a chemical -a pheromone- as they move across space. In turn, they are attracted by this same pheromone so that eventually a trail is formed. In our study, we introduce a new image analysis technique to estimate the concentrations of pheromone directly on the trails. In this way, we can characterise the ingredients of the feedback loop that ultimately leads to the formation of trails. We show that the response to pheromone concentrations is linear: an ant will turn to the left with frequency proportional to the difference between the pheromone concentrations on its left and right sides. Such a linear individual response was rejected by previous literature, as it would be incompatible with the results of a large number of experiments: trails can only be reinforced if the ants have a disproportionally higher probability to select the trail with higher pheromone concentration. However, we show that the required non-linearity does not reside in the perceptual response of the ants, but in the noise associated with their movement.

Suggested Citation

  • Andrea Perna & Boris Granovskiy & Simon Garnier & Stamatios C Nicolis & Marjorie Labédan & Guy Theraulaz & Vincent Fourcassié & David J T Sumpter, 2012. "Individual Rules for Trail Pattern Formation in Argentine Ants (Linepithema humile)," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-12, July.
  • Handle: RePEc:plo:pcbi00:1002592
    DOI: 10.1371/journal.pcbi.1002592
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002592
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002592&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002592?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Audrey Dussutour & Vincent Fourcassié & Dirk Helbing & Jean-Louis Deneubourg, 2004. "Optimal traffic organization in ants under crowded conditions," Nature, Nature, vol. 428(6978), pages 70-73, March.
    2. Dirk Helbing & Joachim Keltsch & Péter Molnár, 1997. "Modelling the evolution of human trail systems," Nature, Nature, vol. 388(6637), pages 47-50, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    2. Seitz, Michael J. & Dietrich, Felix & Köster, Gerta, 2015. "The effect of stepping on pedestrian trajectories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 594-604.
    3. Daniel Strömbom & Audrey Dussutour, 2018. "Self-organized traffic via priority rules in leaf-cutting ants," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-13, October.
    4. Mohammad Komareji & Roland Bouffanais, 2013. "Resilience and Controllability of Dynamic Collective Behaviors," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-15, December.
    5. Czirók, András & Vicsek, Tamás, 2000. "Collective behavior of interacting self-propelled particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 281(1), pages 17-29.
    6. Jinxiao Duan & Guanwen Zeng & Nimrod Serok & Daqing Li & Efrat Blumenfeld Lieberthal & Hai-Jun Huang & Shlomo Havlin, 2023. "Spatiotemporal dynamics of traffic bottlenecks yields an early signal of heavy congestions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    8. Armbruster, D. & de Beer, C. & Freitag, M. & Jagalski, T. & Ringhofer, C., 2006. "Autonomous control of production networks using a pheromone approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 104-114.
    9. Simon Garnier & Tucker Murphy & Matthew Lutz & Edward Hurme & Simon Leblanc & Iain D Couzin, 2013. "Stability and Responsiveness in a Self-Organized Living Architecture," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-10, March.
    10. Viana, Matheus P. & Fourcassié, Vincent & Perna, Andrea & Costa, Luciano da F. & Jost, Christian, 2013. "Accessibility in networks: A useful measure for understanding social insect nest architecture," Chaos, Solitons & Fractals, Elsevier, vol. 46(C), pages 38-45.
    11. Huang, Jiechen & Wang, Juan & Xia, Chengyi, 2020. "Role of vaccine efficacy in the vaccination behavior under myopic update rule on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    12. Gašper Jaklič & Tadej Kanduč & Selena Praprotnik & Emil Žagar, 2012. "Energy Minimizing Mountain Ascent," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 680-693, November.
    13. Mehdi Moussaïd & Elsa G Guillot & Mathieu Moreau & Jérôme Fehrenbach & Olivier Chabiron & Samuel Lemercier & Julien Pettré & Cécile Appert-Rolland & Pierre Degond & Guy Theraulaz, 2012. "Traffic Instabilities in Self-Organized Pedestrian Crowds," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-10, March.
    14. Mark W. Moffett & Simon Garnier & Kathleen M. Eisenhardt & Nathan R. Furr & Massimo Warglien & Costanza Sartoris & William Ocasio & Thorbjørn Knudsen & Lars A. Bach & Joachim Offenberg, 2021. "Ant colonies: building complex organizations with minuscule brains and no leaders," Journal of Organization Design, Springer;Organizational Design Community, vol. 10(1), pages 55-74, March.
    15. Sakiyama, Tomoko & Gunji, Yukio-Pegio, 2016. "Directional ambiguity in trail-laying algorithms," Ecological Modelling, Elsevier, vol. 340(C), pages 37-44.
    16. Jiang, Rui & Wu, Qing-Song, 2006. "The moving behavior of a large object in the crowds in a narrow channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 457-463.
    17. Manuel Stein & Halldór Janetzko & Daniel Seebacher & Alexander Jäger & Manuel Nagel & Jürgen Hölsch & Sven Kosub & Tobias Schreck & Daniel A. Keim & Michael Grossniklaus, 2017. "How to Make Sense of Team Sport Data: From Acquisition to Data Modeling and Research Aspects," Data, MDPI, vol. 2(1), pages 1-23, January.
    18. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    19. Richard Stafford & Gray A Williams & Mark S Davies, 2011. "Robustness of Self-Organised Systems to Changes in Behaviour: An Example from Real and Simulated Self-Organised Snail Aggregations," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-7, July.
    20. Christoph Grüter & Roger Schürch & Tomer J Czaczkes & Keeley Taylor & Thomas Durance & Sam M Jones & Francis L W Ratnieks, 2012. "Negative Feedback Enables Fast and Flexible Collective Decision-Making in Ants," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-11, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.