IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0037911.html
   My bibliography  Save this article

Inferring General Relations between Network Characteristics from Specific Network Ensembles

Author

Listed:
  • Stefano Cardanobile
  • Volker Pernice
  • Moritz Deger
  • Stefan Rotter

Abstract

Different network models have been suggested for the topology underlying complex interactions in natural systems. These models are aimed at replicating specific statistical features encountered in real-world networks. However, it is rarely considered to which degree the results obtained for one particular network class can be extrapolated to real-world networks. We address this issue by comparing different classical and more recently developed network models with respect to their ability to generate networks with large structural variability. In particular, we consider the statistical constraints which the respective construction scheme imposes on the generated networks. After having identified the most variable networks, we address the issue of which constraints are common to all network classes and are thus suitable candidates for being generic statistical laws of complex networks. In fact, we find that generic, not model-related dependencies between different network characteristics do exist. This makes it possible to infer global features from local ones using regression models trained on networks with high generalization power. Our results confirm and extend previous findings regarding the synchronization properties of neural networks. Our method seems especially relevant for large networks, which are difficult to map completely, like the neural networks in the brain. The structure of such large networks cannot be fully sampled with the present technology. Our approach provides a method to estimate global properties of under-sampled networks in good approximation. Finally, we demonstrate on three different data sets (C. elegans neuronal network, R. prowazekii metabolic network, and a network of synonyms extracted from Roget’s Thesaurus) that real-world networks have statistical relations compatible with those obtained using regression models.

Suggested Citation

  • Stefano Cardanobile & Volker Pernice & Moritz Deger & Stefan Rotter, 2012. "Inferring General Relations between Network Characteristics from Specific Network Ensembles," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-9, June.
  • Handle: RePEc:plo:pone00:0037911
    DOI: 10.1371/journal.pone.0037911
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0037911
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0037911&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0037911?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhan, Choujun & Chen, Guanrong & Yeung, Lam F., 2010. "On the distributions of Laplacian eigenvalues versus node degrees in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1779-1788.
    2. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    3. Luis E C Rocha & Fredrik Liljeros & Petter Holme, 2011. "Simulated Epidemics in an Empirical Spatiotemporal Network of 50,185 Sexual Contacts," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-9, March.
    4. Bogacz, Leszek & Burda, Zdzisław & Wacław, Bartłomiej, 2006. "Homogeneous complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 587-607.
    5. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    6. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biggiero, Lucio & Angelini, Pier Paolo, 2015. "Hunting scale-free properties in R&D collaboration networks: Self-organization, power-law and policy issues in the European aerospace research area," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 21-43.
    2. Eugenio Valdano & Chiara Poletto & Armando Giovannini & Diana Palma & Lara Savini & Vittoria Colizza, 2015. "Predicting Epidemic Risk from Past Temporal Contact Data," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-19, March.
    3. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    4. Wen, Xiangxi & Tu, Congliang & Wu, Minggong, 2018. "Node importance evaluation in aviation network based on “No Return” node deletion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 546-559.
    5. Selen Onel & Abe Zeid & Sagar Kamarthi, 2011. "The structure and analysis of nanotechnology co-author and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 119-138, October.
    6. Markovič, Rene & Gosak, Marko & Marhl, Marko, 2014. "Broad-scale small-world network topology induces optimal synchronization of flexible oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 14-21.
    7. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    8. Walter Quattrociocchi & Guido Caldarelli & Antonio Scala, 2014. "Self-Healing Networks: Redundancy and Structure," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-7, February.
    9. Pongou, Roland & Tchuente, Guy & Tondji, Jean-Baptiste, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," GLO Discussion Paper Series 957, Global Labor Organization (GLO).
    10. Nie, Tingyuan & Fan, Bo & Wang, Zhenhao, 2022. "Complexity and robustness of weighted circuit network of placement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    11. Gong, Pulin & van Leeuwen, Cees, 2003. "Emergence of scale-free network with chaotic units," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 679-688.
    12. Ping Pei & Haihan Zhang & Huizhen Zhang & Chen Yang & Tianbo An, 2024. "Network Synchronization via Pinning Control from an Attacker-Defender Game Perspective," Mathematics, MDPI, vol. 12(12), pages 1-17, June.
    13. Shriram Ashok Kumar & Maliha Tasnim & Zohvin Singh Basnyat & Faezeh Karimi & Kaveh Khalilpour, 2022. "Resilience Analysis of Australian Electricity and Gas Transmission Networks," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    14. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    15. Tachimori, Yutaka & Iwanaga, Hiroaki & Tahara, Takashi, 2013. "The networks from medical knowledge and clinical practice have small-world, scale-free, and hierarchical features," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6084-6089.
    16. Babutsidze, Zakaria, 2018. "The rise of electronic social networks and implications for advertisers," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 27-39.
    17. Huang, Wencheng & Zhou, Bowen & Yu, Yaocheng & Sun, Hao & Xu, Pengpeng, 2021. "Using the disaster spreading theory to analyze the cascading failure of urban rail transit network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    18. Guillaume, Jean-Loup & Latapy, Matthieu, 2006. "Bipartite graphs as models of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 795-813.
    19. Foti, Nicholas J. & Pauls, Scott & Rockmore, Daniel N., 2013. "Stability of the World Trade Web over time – An extinction analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 37(9), pages 1889-1910.
    20. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0037911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.