IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0053668.html
   My bibliography  Save this article

Combination of a Proteomics Approach and Reengineering of Meso Scale Network Models for Prediction of Mode-of-Action for Tyrosine Kinase Inhibitors

Author

Listed:
  • Stefan Balabanov
  • Thomas Wilhelm
  • Simone Venz
  • Gunhild Keller
  • Christian Scharf
  • Heike Pospisil
  • Melanie Braig
  • Christine Barett
  • Carsten Bokemeyer
  • Reinhard Walther
  • Tim H Brümmendorf
  • Andreas Schuppert

Abstract

In drug discovery, the characterisation of the precise modes of action (MoA) and of unwanted off-target effects of novel molecularly targeted compounds is of highest relevance. Recent approaches for identification of MoA have employed various techniques for modeling of well defined signaling pathways including structural information, changes in phenotypic behavior of cells and gene expression patterns after drug treatment. However, efficient approaches focusing on proteome wide data for the identification of MoA including interference with mutations are underrepresented. As mutations are key drivers of drug resistance in molecularly targeted tumor therapies, efficient analysis and modeling of downstream effects of mutations on drug MoA is a key to efficient development of improved targeted anti-cancer drugs. Here we present a combination of a global proteome analysis, reengineering of network models and integration of apoptosis data used to infer the mode-of-action of various tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) cell lines expressing wild type as well as TKI resistance conferring mutants of BCR-ABL. The inferred network models provide a tool to predict the main MoA of drugs as well as to grouping of drugs with known similar kinase inhibitory activity patterns in comparison to drugs with an additional MoA. We believe that our direct network reconstruction approach, demonstrated on proteomics data, can provide a complementary method to the established network reconstruction approaches for the preclinical modeling of the MoA of various types of targeted drugs in cancer treatment. Hence it may contribute to the more precise prediction of clinically relevant on- and off-target effects of TKIs.

Suggested Citation

  • Stefan Balabanov & Thomas Wilhelm & Simone Venz & Gunhild Keller & Christian Scharf & Heike Pospisil & Melanie Braig & Christine Barett & Carsten Bokemeyer & Reinhard Walther & Tim H Brümmendorf & And, 2013. "Combination of a Proteomics Approach and Reengineering of Meso Scale Network Models for Prediction of Mode-of-Action for Tyrosine Kinase Inhibitors," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-14, January.
  • Handle: RePEc:plo:pone00:0053668
    DOI: 10.1371/journal.pone.0053668
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053668
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0053668&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0053668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander Mitsos & Ioannis N Melas & Paraskeuas Siminelakis & Aikaterini D Chairakaki & Julio Saez-Rodriguez & Leonidas G Alexopoulos, 2009. "Identifying Drug Effects via Pathway Alterations using an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-11, December.
    2. Ramesh Ummanni & Frederike Mundt & Heike Pospisil & Simone Venz & Christian Scharf & Christine Barett & Maria Fälth & Jens Köllermann & Reinhard Walther & Thorsten Schlomm & Guido Sauter & Carsten Bok, 2011. "Identification of Clinically Relevant Protein Targets in Prostate Cancer with 2D-DIGE Coupled Mass Spectrometry and Systems Biology Network Platform," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-14, February.
    3. Judith S. Sebolt-Leopold & Jessie M. English, 2006. "Mechanisms of drug inhibition of signalling molecules," Nature, Nature, vol. 441(7092), pages 457-462, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian Wan & Ranadip Pal, 2014. "An Ensemble Based Top Performing Approach for NCI-DREAM Drug Sensitivity Prediction Challenge," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-12, June.
    2. Federica Eduati & Alberto Corradin & Barbara Di Camillo & Gianna Toffolo, 2010. "A Boolean Approach to Linear Prediction for Signaling Network Modeling," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-6, September.
    3. Zhiwei Ji & Jing Su & Chenglin Liu & Hongyan Wang & Deshuang Huang & Xiaobo Zhou, 2014. "Integrating Genomics and Proteomics Data to Predict Drug Effects Using Binary Linear Programming," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-13, July.
    4. Ioannis N Melas & Regina Samaga & Leonidas G Alexopoulos & Steffen Klamt, 2013. "Detecting and Removing Inconsistencies between Experimental Data and Signaling Network Topologies Using Integer Linear Programming on Interaction Graphs," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-19, September.
    5. Zebian, Hussam & Mitsos, Alexander, 2013. "Pressurized oxy-coal combustion: Ideally flexible to uncertainties," Energy, Elsevier, vol. 57(C), pages 513-526.
    6. Melody K Morris & Julio Saez-Rodriguez & David C Clarke & Peter K Sorger & Douglas A Lauffenburger, 2011. "Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-20, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0053668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.