IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001095.html
   My bibliography  Save this article

Identifying Causal Genes and Dysregulated Pathways in Complex Diseases

Author

Listed:
  • Yoo-Ah Kim
  • Stefan Wuchty
  • Teresa M Przytycka

Abstract

In complex diseases, various combinations of genomic perturbations often lead to the same phenotype. On a molecular level, combinations of genomic perturbations are assumed to dys-regulate the same cellular pathways. Such a pathway-centric perspective is fundamental to understanding the mechanisms of complex diseases and the identification of potential drug targets. In order to provide an integrated perspective on complex disease mechanisms, we developed a novel computational method to simultaneously identify causal genes and dys-regulated pathways. First, we identified a representative set of genes that are differentially expressed in cancer compared to non-tumor control cases. Assuming that disease-associated gene expression changes are caused by genomic alterations, we determined potential paths from such genomic causes to target genes through a network of molecular interactions. Applying our method to sets of genomic alterations and gene expression profiles of 158 Glioblastoma multiforme (GBM) patients we uncovered candidate causal genes and causal paths that are potentially responsible for the altered expression of disease genes. We discovered a set of putative causal genes that potentially play a role in the disease. Combining an expression Quantitative Trait Loci (eQTL) analysis with pathway information, our approach allowed us not only to identify potential causal genes but also to find intermediate nodes and pathways mediating the information flow between causal and target genes. Our results indicate that different genomic perturbations indeed dys-regulate the same functional pathways, supporting a pathway-centric perspective of cancer. While copy number alterations and gene expression data of glioblastoma patients provided opportunities to test our approach, our method can be applied to any disease system where genetic variations play a fundamental causal role.Author Summary: It is now being recognized that complex diseases should be studied from the perspective of dys-regulated pathways and processes rather than individual genes. Indeed, various combinations of molecular perturbations might lead to the same disease. In such cases, responses to these perturbations are expected to converge to common pathways. In addition, signals that are associated with each individual perturbation might be weak, rendering studies of complex diseases particularly challenging. Aiming to provide an integrated perspective on complex disease mechanisms we developed a novel computational method to simultaneously identify causal genes and dys-regulated pathways. Starting with an identification of a disease-associated set of genes and their statistical associations with genomic alterations, we utilized graph-theoretical techniques and combinatorial algorithms to determine potential paths from the genomic causes through a network of molecular interactions. We applied our method to sets of genomic alterations and gene expression profiles of Glioblastoma multiforme (GBM) patients, uncovering candidate causal genes and causal paths that are potentially responsible for the altered expression of disease associated target genes. While copy number alterations and gene expression data of GBM patients provided opportunities to test our approach, our method can be applied to any disease system where genetic alterations play a fundamental causal role, and provides an important step toward the understanding of complex diseases.

Suggested Citation

  • Yoo-Ah Kim & Stefan Wuchty & Teresa M Przytycka, 2011. "Identifying Causal Genes and Dysregulated Pathways in Complex Diseases," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-13, March.
  • Handle: RePEc:plo:pcbi00:1001095
    DOI: 10.1371/journal.pcbi.1001095
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001095
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001095&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eric E. Schadt, 2009. "Molecular networks as sensors and drivers of common human diseases," Nature, Nature, vol. 461(7261), pages 218-223, September.
    2. Charles M. Perou & Therese Sørlie & Michael B. Eisen & Matt van de Rijn & Stefanie S. Jeffrey & Christian A. Rees & Jonathan R. Pollack & Douglas T. Ross & Hilde Johnsen & Lars A. Akslen & Øystein Flu, 2000. "Molecular portraits of human breast tumours," Nature, Nature, vol. 406(6797), pages 747-752, August.
    3. Fridlyand, Jane & Snijders, Antoine M. & Pinkel, Dan & Albertson, Donna G. & Jain, A.N.Ajay N., 2004. "Hidden Markov models approach to the analysis of array CGH data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 132-153, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neil R. Smalheiser, 2012. "Literature-based discovery: Beyond the ABCs," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(2), pages 218-224, February.
    2. Wei Zhang & Takayo Ota & Viji Shridhar & Jeremy Chien & Baolin Wu & Rui Kuang, 2013. "Network-based Survival Analysis Reveals Subnetwork Signatures for Predicting Outcomes of Ovarian Cancer Treatment," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-16, March.
    3. Calvin McCarter & Judie Howrylak & Seyoung Kim, 2020. "Learning gene networks underlying clinical phenotypes using SNP perturbation," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-24, October.
    4. Wang, Zhixiao & Rui, Xiaobin & Yuan, Guan & Cui, Jingjing & Hadzibeganovic, Tarik, 2021. "Endemic information-contagion outbreaks in complex networks with potential spreaders based recurrent-state transmission dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xi & Hoadley, Katherine A. & Hannig, Jan & Marron, J.S., 2023. "Jackstraw inference for AJIVE data integration," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    2. Egashira, Kento & Yata, Kazuyoshi & Aoshima, Makoto, 2024. "Asymptotic properties of hierarchical clustering in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    3. María Elena Martínez & Jonathan T Unkart & Li Tao & Candyce H Kroenke & Richard Schwab & Ian Komenaka & Scarlett Lin Gomez, 2017. "Prognostic significance of marital status in breast cancer survival: A population-based study," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.
    4. Yishai Shimoni, 2018. "Association between expression of random gene sets and survival is evident in multiple cancer types and may be explained by sub-classification," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-15, February.
    5. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    6. Salvatore Fasola & Vito M. R. Muggeo & Helmut Küchenhoff, 2018. "A heuristic, iterative algorithm for change-point detection in abrupt change models," Computational Statistics, Springer, vol. 33(2), pages 997-1015, June.
    7. Huixia Judy Wang & Jianhua Hu, 2011. "Identification of Differential Aberrations in Multiple-Sample Array CGH Studies," Biometrics, The International Biometric Society, vol. 67(2), pages 353-362, June.
    8. A. Gandolfi & M. Benelli & A. Magi & S. Chiti, 2013. "Moment estimation in discrete shifting level model applied to fast array-CGH segmentation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(3), pages 227-262, August.
    9. Radhakrishnan Nagarajan & Marco Scutari, 2013. "Impact of Noise on Molecular Network Inference," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    10. R Joseph Bender & Feilim Mac Gabhann, 2013. "Expression of VEGF and Semaphorin Genes Define Subgroups of Triple Negative Breast Cancer," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-15, May.
    11. Deepak Poduval & Zuzana Sichmanova & Anne Hege Straume & Per Eystein Lønning & Stian Knappskog, 2020. "The novel microRNAs hsa-miR-nov7 and hsa-miR-nov3 are over-expressed in locally advanced breast cancer," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-23, April.
    12. Zhiguang Huo & Li Zhu & Tianzhou Ma & Hongcheng Liu & Song Han & Daiqing Liao & Jinying Zhao & George Tseng, 2020. "Two-Way Horizontal and Vertical Omics Integration for Disease Subtype Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(1), pages 1-22, April.
    13. Markus Ringnér & Erik Fredlund & Jari Häkkinen & Åke Borg & Johan Staaf, 2011. "GOBO: Gene Expression-Based Outcome for Breast Cancer Online," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-11, March.
    14. Seyed Yahya Anvar & Allan Tucker & Veronica Vinciotti & Andrea Venema & Gert-Jan B van Ommen & Silvere M van der Maarel & Vered Raz & Peter A C ‘t Hoen, 2011. "Interspecies Translation of Disease Networks Increases Robustness and Predictive Accuracy," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-14, November.
    15. Casey S Greene & Olga G Troyanskaya, 2012. "Chapter 2: Data-Driven View of Disease Biology," PLOS Computational Biology, Public Library of Science, vol. 8(12), pages 1-8, December.
    16. Calvin McCarter & Judie Howrylak & Seyoung Kim, 2020. "Learning gene networks underlying clinical phenotypes using SNP perturbation," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-24, October.
    17. Mark Reimers, 2010. "Making Informed Choices about Microarray Data Analysis," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-7, May.
    18. Alan A. Arslan & Yian Zhang & Nedim Durmus & Sultan Pehlivan & Adrienne Addessi & Freya Schnabel & Yongzhao Shao & Joan Reibman, 2021. "Breast Cancer Characteristics in the Population of Survivors Participating in the World Trade Center Environmental Health Center Program 2002–2019," IJERPH, MDPI, vol. 18(14), pages 1-11, July.
    19. Sandra M. Rocha & Sílvia Socorro & Luís A. Passarinha & Cláudio J. Maia, 2022. "Comprehensive Landscape of STEAP Family Members Expression in Human Cancers: Unraveling the Potential Usefulness in Clinical Practice Using Integrated Bioinformatics Analysis," Data, MDPI, vol. 7(5), pages 1-48, May.
    20. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.