IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001095.html
   My bibliography  Save this article

Identifying Causal Genes and Dysregulated Pathways in Complex Diseases

Author

Listed:
  • Yoo-Ah Kim
  • Stefan Wuchty
  • Teresa M Przytycka

Abstract

In complex diseases, various combinations of genomic perturbations often lead to the same phenotype. On a molecular level, combinations of genomic perturbations are assumed to dys-regulate the same cellular pathways. Such a pathway-centric perspective is fundamental to understanding the mechanisms of complex diseases and the identification of potential drug targets. In order to provide an integrated perspective on complex disease mechanisms, we developed a novel computational method to simultaneously identify causal genes and dys-regulated pathways. First, we identified a representative set of genes that are differentially expressed in cancer compared to non-tumor control cases. Assuming that disease-associated gene expression changes are caused by genomic alterations, we determined potential paths from such genomic causes to target genes through a network of molecular interactions. Applying our method to sets of genomic alterations and gene expression profiles of 158 Glioblastoma multiforme (GBM) patients we uncovered candidate causal genes and causal paths that are potentially responsible for the altered expression of disease genes. We discovered a set of putative causal genes that potentially play a role in the disease. Combining an expression Quantitative Trait Loci (eQTL) analysis with pathway information, our approach allowed us not only to identify potential causal genes but also to find intermediate nodes and pathways mediating the information flow between causal and target genes. Our results indicate that different genomic perturbations indeed dys-regulate the same functional pathways, supporting a pathway-centric perspective of cancer. While copy number alterations and gene expression data of glioblastoma patients provided opportunities to test our approach, our method can be applied to any disease system where genetic variations play a fundamental causal role.Author Summary: It is now being recognized that complex diseases should be studied from the perspective of dys-regulated pathways and processes rather than individual genes. Indeed, various combinations of molecular perturbations might lead to the same disease. In such cases, responses to these perturbations are expected to converge to common pathways. In addition, signals that are associated with each individual perturbation might be weak, rendering studies of complex diseases particularly challenging. Aiming to provide an integrated perspective on complex disease mechanisms we developed a novel computational method to simultaneously identify causal genes and dys-regulated pathways. Starting with an identification of a disease-associated set of genes and their statistical associations with genomic alterations, we utilized graph-theoretical techniques and combinatorial algorithms to determine potential paths from the genomic causes through a network of molecular interactions. We applied our method to sets of genomic alterations and gene expression profiles of Glioblastoma multiforme (GBM) patients, uncovering candidate causal genes and causal paths that are potentially responsible for the altered expression of disease associated target genes. While copy number alterations and gene expression data of GBM patients provided opportunities to test our approach, our method can be applied to any disease system where genetic alterations play a fundamental causal role, and provides an important step toward the understanding of complex diseases.

Suggested Citation

  • Yoo-Ah Kim & Stefan Wuchty & Teresa M Przytycka, 2011. "Identifying Causal Genes and Dysregulated Pathways in Complex Diseases," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-13, March.
  • Handle: RePEc:plo:pcbi00:1001095
    DOI: 10.1371/journal.pcbi.1001095
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001095
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001095&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eric E. Schadt, 2009. "Molecular networks as sensors and drivers of common human diseases," Nature, Nature, vol. 461(7261), pages 218-223, September.
    2. Charles M. Perou & Therese Sørlie & Michael B. Eisen & Matt van de Rijn & Stefanie S. Jeffrey & Christian A. Rees & Jonathan R. Pollack & Douglas T. Ross & Hilde Johnsen & Lars A. Akslen & Øystein Flu, 2000. "Molecular portraits of human breast tumours," Nature, Nature, vol. 406(6797), pages 747-752, August.
    3. Fridlyand, Jane & Snijders, Antoine M. & Pinkel, Dan & Albertson, Donna G. & Jain, A.N.Ajay N., 2004. "Hidden Markov models approach to the analysis of array CGH data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 132-153, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neil R. Smalheiser, 2012. "Literature-based discovery: Beyond the ABCs," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(2), pages 218-224, February.
    2. Wei Zhang & Takayo Ota & Viji Shridhar & Jeremy Chien & Baolin Wu & Rui Kuang, 2013. "Network-based Survival Analysis Reveals Subnetwork Signatures for Predicting Outcomes of Ovarian Cancer Treatment," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-16, March.
    3. Calvin McCarter & Judie Howrylak & Seyoung Kim, 2020. "Learning gene networks underlying clinical phenotypes using SNP perturbation," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-24, October.
    4. Wang, Zhixiao & Rui, Xiaobin & Yuan, Guan & Cui, Jingjing & Hadzibeganovic, Tarik, 2021. "Endemic information-contagion outbreaks in complex networks with potential spreaders based recurrent-state transmission dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xi & Hoadley, Katherine A. & Hannig, Jan & Marron, J.S., 2023. "Jackstraw inference for AJIVE data integration," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    2. Manish G & Anil Kumar Badana & Rama Rao Malla, 2017. "Emerging Diagnostic and Prognostic Biomarkers of Triple Negative Breast Cancer," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(3), pages 561-565, August.
    3. Jacob Elnaggar & Fern Tsien & Lucio Miele & Chindo Hicks & Clayton Yates & Melisa Davis, 2019. "An Integrative Genomics Approach for Associating Genetic Susceptibility with the Tumor Immune Microenvironment in Triple Negative Breast Cancer," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 15(1), pages 1-12, February.
    4. Egashira, Kento & Yata, Kazuyoshi & Aoshima, Makoto, 2024. "Asymptotic properties of hierarchical clustering in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    5. María Elena Martínez & Jonathan T Unkart & Li Tao & Candyce H Kroenke & Richard Schwab & Ian Komenaka & Scarlett Lin Gomez, 2017. "Prognostic significance of marital status in breast cancer survival: A population-based study," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.
    6. Yishai Shimoni, 2018. "Association between expression of random gene sets and survival is evident in multiple cancer types and may be explained by sub-classification," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-15, February.
    7. Pi-Jing Wei & Di Zhang & Hai-Tao Li & Junfeng Xia & Chun-Hou Zheng, 2017. "DriverFinder: A Gene Length-Based Network Method to Identify Cancer Driver Genes," Complexity, Hindawi, vol. 2017, pages 1-10, August.
    8. Marcin Pilarczyk & Mehdi Fazel-Najafabadi & Michal Kouril & Behrouz Shamsaei & Juozas Vasiliauskas & Wen Niu & Naim Mahi & Lixia Zhang & Nicholas A. Clark & Yan Ren & Shana White & Rashid Karim & Huan, 2022. "Connecting omics signatures and revealing biological mechanisms with iLINCS," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Xue Jiang & Han Zhang & Xiongwen Quan & Zhandong Liu & Yanbin Yin, 2017. "Disease-related gene module detection based on a multi-label propagation clustering algorithm," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-17, May.
    10. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    11. Love Michael I. & Myšičková Alena & Sun Ruping & Kalscheuer Vera & Vingron Martin & Haas Stefan A., 2011. "Modeling Read Counts for CNV Detection in Exome Sequencing Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-30, November.
    12. Salvatore Fasola & Vito M. R. Muggeo & Helmut Küchenhoff, 2018. "A heuristic, iterative algorithm for change-point detection in abrupt change models," Computational Statistics, Springer, vol. 33(2), pages 997-1015, June.
    13. Junhee Seok & Ronald W Davis & Wenzhong Xiao, 2015. "A Hybrid Approach of Gene Sets and Single Genes for the Prediction of Survival Risks with Gene Expression Data," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
    14. Qing Qu & Yan Mao & Xiao-chun Fei & Kun-wei Shen, 2013. "The Impact of Androgen Receptor Expression on Breast Cancer Survival: A Retrospective Study and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    15. Huixia Judy Wang & Jianhua Hu, 2011. "Identification of Differential Aberrations in Multiple-Sample Array CGH Studies," Biometrics, The International Biometric Society, vol. 67(2), pages 353-362, June.
    16. Vincent Guigues, 2012. "Nonparametric multivariate breakpoint detection for the means, variances, and covariances of a discrete time stochastic process," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 857-882, December.
    17. Bourret, Pascale & Keating, Peter & Cambrosio, Alberto, 2011. "Regulating diagnosis in post-genomic medicine: Re-aligning clinical judgment?," Social Science & Medicine, Elsevier, vol. 73(6), pages 816-824, September.
    18. Rameen Beroukhim & Ming Lin & Yuhyun Park & Ke Hao & Xiaojun Zhao & Levi A Garraway & Edward A Fox & Ephraim P Hochberg & Ingo K Mellinghoff & Matthias D Hofer & Aurelien Descazeaud & Mark A Rubin & M, 2006. "Inferring Loss-of-Heterozygosity from Unpaired Tumors Using High-Density Oligonucleotide SNP Arrays," PLOS Computational Biology, Public Library of Science, vol. 2(5), pages 1-10, May.
    19. G. Gambardella & G. Viscido & B. Tumaini & A. Isacchi & R. Bosotti & D. di Bernardo, 2022. "A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. A. Gandolfi & M. Benelli & A. Magi & S. Chiti, 2013. "Moment estimation in discrete shifting level model applied to fast array-CGH segmentation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(3), pages 227-262, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.