IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0178006.html
   My bibliography  Save this article

Disease-related gene module detection based on a multi-label propagation clustering algorithm

Author

Listed:
  • Xue Jiang
  • Han Zhang
  • Xiongwen Quan
  • Zhandong Liu
  • Yanbin Yin

Abstract

Detecting disease-related gene modules by analyzing gene expression data is of great significance. It is helpful for exploratory analysis of the interaction mechanisms of genes under complex disease phenotypes. The multi-label propagation algorithm (MLPA) has been widely used in module detection for its fast and easy implementation. The accuracy of MLPA greatly depends on the connections between nodes, and most existing research focuses on measuring the similarity between nodes. However, MLPA does not perform well with loose connections between disease-related genes. Moreover, the biological significance of modules obtained by MLPA has not been demonstrated. To solve these problems, we designed a double label propagation clustering algorithm (DLPCA) based on MLPA to study Huntington’s disease. In DLPCA, in addition to category labels, we introduced pathogenic labels to supervise the process of multi-label propagation clustering. The pathogenic labels contain pathogenic information about disease genes and the hierarchical structure of gene expression data. Experimental results demonstrated the superior performance of DLPCA compared with other conventional gene-clustering algorithms.

Suggested Citation

  • Xue Jiang & Han Zhang & Xiongwen Quan & Zhandong Liu & Yanbin Yin, 2017. "Disease-related gene module detection based on a multi-label propagation clustering algorithm," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-17, May.
  • Handle: RePEc:plo:pone00:0178006
    DOI: 10.1371/journal.pone.0178006
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178006
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0178006&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0178006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang Bin & Horvath Steve, 2005. "A General Framework for Weighted Gene Co-Expression Network Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-45, August.
    2. L. Šubelj & M. Bajec, 2011. "Robust network community detection using balanced propagation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 81(3), pages 353-362, June.
    3. Eric E. Schadt, 2009. "Molecular networks as sensors and drivers of common human diseases," Nature, Nature, vol. 461(7261), pages 218-223, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric P Xing & Ross E Curtis & Georg Schoenherr & Seunghak Lee & Junming Yin & Kriti Puniyani & Wei Wu & Peter Kinnaird, 2014. "GWAS in a Box: Statistical and Visual Analytics of Structured Associations via GenAMap," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-19, June.
    2. Yixuan Qiu & Jing Lei & Kathryn Roeder, 2023. "Gradient-based sparse principal component analysis with extensions to online learning," Biometrika, Biometrika Trust, vol. 110(2), pages 339-360.
    3. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    4. Ahrum Son & Hyunsoo Kim & Jolene K. Diedrich & Casimir Bamberger & Daniel B. McClatchy & Stuart A. Lipton & John R. Yates, 2024. "Using in vivo intact structure for system-wide quantitative analysis of changes in proteins," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Yan Guo & Hui Yu & Haocan Song & Jiapeng He & Olufunmilola Oyebamiji & Huining Kang & Jie Ping & Scott Ness & Yu Shyr & Fei Ye, 2021. "MetaGSCA: A tool for meta-analysis of gene set differential coexpression," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-15, May.
    6. Pi-Jing Wei & Di Zhang & Hai-Tao Li & Junfeng Xia & Chun-Hou Zheng, 2017. "DriverFinder: A Gene Length-Based Network Method to Identify Cancer Driver Genes," Complexity, Hindawi, vol. 2017, pages 1-10, August.
    7. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    8. Mandel, Antoine & Landini, Simone & Gallegati, Mauro & Gintis, Herbert, 2015. "Price dynamics, financial fragility and aggregate volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 257-277.
    9. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    10. Peter Langfelder & Rui Luo & Michael C Oldham & Steve Horvath, 2011. "Is My Network Module Preserved and Reproducible?," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-29, January.
    11. Elva María Novoa-del-Toro & Efrén Mezura-Montes & Matthieu Vignes & Morgane Térézol & Frédérique Magdinier & Laurent Tichit & Anaïs Baudot, 2021. "A multi-objective genetic algorithm to find active modules in multiplex biological networks," PLOS Computational Biology, Public Library of Science, vol. 17(8), pages 1-24, August.
    12. Matias Nehuen Iglesias, 2021. "The Overlooked Insights from Correlation Structures in Economic Geography," Papers in Evolutionary Economic Geography (PEEG) 2105, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jan 2021.
    13. Yoo-Ah Kim & Stefan Wuchty & Teresa M Przytycka, 2011. "Identifying Causal Genes and Dysregulated Pathways in Complex Diseases," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-13, March.
    14. Susan Dina Ghiassian & Jörg Menche & Albert-László Barabási, 2015. "A DIseAse MOdule Detection (DIAMOnD) Algorithm Derived from a Systematic Analysis of Connectivity Patterns of Disease Proteins in the Human Interactome," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-21, April.
    15. Valur Emilsson & Elias F. Gudmundsson & Thorarinn Jonmundsson & Brynjolfur G. Jonsson & Michael Twarog & Valborg Gudmundsdottir & Zhiguang Li & Nancy Finkel & Stephen Poor & Xin Liu & Robert Esterberg, 2022. "A proteogenomic signature of age-related macular degeneration in blood," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Lingxue Zhang & Seyoung Kim, 2014. "Learning Gene Networks under SNP Perturbations Using eQTL Datasets," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-20, February.
    17. Benjamin A Samuels & E David Leonardo & Alex Dranovsky & Amanda Williams & Erik Wong & Addie May I Nesbitt & Richard D McCurdy & Rene Hen & Mark Alter, 2014. "Global State Measures of the Dentate Gyrus Gene Expression System Predict Antidepressant-Sensitive Behaviors," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-10, January.
    18. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Chang Su & Zichun Xu & Xinning Shan & Biao Cai & Hongyu Zhao & Jingfei Zhang, 2023. "Cell-type-specific co-expression inference from single cell RNA-sequencing data," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Saucan, Emil & Sreejith, R.P. & Vivek-Ananth, R.P. & Jost, Jürgen & Samal, Areejit, 2019. "Discrete Ricci curvatures for directed networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 347-360.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0178006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.