IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001061.html
   My bibliography  Save this article

PhylOTU: A High-Throughput Procedure Quantifies Microbial Community Diversity and Resolves Novel Taxa from Metagenomic Data

Author

Listed:
  • Thomas J Sharpton
  • Samantha J Riesenfeld
  • Steven W Kembel
  • Joshua Ladau
  • James P O'Dwyer
  • Jessica L Green
  • Jonathan A Eisen
  • Katherine S Pollard

Abstract

Microbial diversity is typically characterized by clustering ribosomal RNA (SSU-rRNA) sequences into operational taxonomic units (OTUs). Targeted sequencing of environmental SSU-rRNA markers via PCR may fail to detect OTUs due to biases in priming and amplification. Analysis of shotgun sequenced environmental DNA, known as metagenomics, avoids amplification bias but generates fragmentary, non-overlapping sequence reads that cannot be clustered by existing OTU-finding methods. To circumvent these limitations, we developed PhylOTU, a computational workflow that identifies OTUs from metagenomic SSU-rRNA sequence data through the use of phylogenetic principles and probabilistic sequence profiles. Using simulated metagenomic data, we quantified the accuracy with which PhylOTU clusters reads into OTUs. Comparisons of PCR and shotgun sequenced SSU-rRNA markers derived from the global open ocean revealed that while PCR libraries identify more OTUs per sequenced residue, metagenomic libraries recover a greater taxonomic diversity of OTUs. In addition, we discover novel species, genera and families in the metagenomic libraries, including OTUs from phyla missed by analysis of PCR sequences. Taken together, these results suggest that PhylOTU enables characterization of part of the biosphere currently hidden from PCR-based surveys of diversity?Author Summary: Microorganisms comprise the majority of the biodiversity on the planet. Because the overwhelming majority of microbes are not readily cultured in the laboratory, researchers often rely on PCR-based investigations of genomic sequence to characterize microbial diversity. These analyses have dramatically expanded our understanding of biodiversity, but due to methodological biases PCR-based approaches may only reveal part of the microbial biosphere. Shotgun sequencing of environmental DNA, known as metagenomics, avoids the biases associated with targeted amplification of genomic sequence and can provide insight into the diversity hidden from traditional investigations. However, the fragmentary, non-overlapping nature of shotgun sequence data makes it intractable to analyze with existing tools. Here, we present PhylOTU, a novel computational method that enables accurate characterization of microbial diversity from metagenomic data. We process over 10 million metagenomic sequences obtained from the global open ocean to identify novel Bacterial taxa and reveal the presence of microorganisms overlooked by investigation of PCR-based sequences from the same samples. These results suggest that to fully characterize microbial biodiversity requires a novel bioinformatics toolbox for analysis of shotgun metagenomic data.

Suggested Citation

  • Thomas J Sharpton & Samantha J Riesenfeld & Steven W Kembel & Joshua Ladau & James P O'Dwyer & Jessica L Green & Jonathan A Eisen & Katherine S Pollard, 2011. "PhylOTU: A High-Throughput Procedure Quantifies Microbial Community Diversity and Resolves Novel Taxa from Metagenomic Data," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-13, January.
  • Handle: RePEc:plo:pcbi00:1001061
    DOI: 10.1371/journal.pcbi.1001061
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001061
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001061&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter J. Turnbaugh & Micah Hamady & Tanya Yatsunenko & Brandi L. Cantarel & Alexis Duncan & Ruth E. Ley & Mitchell L. Sogin & William J. Jones & Bruce A. Roe & Jason P. Affourtit & Michael Egholm & Be, 2009. "A core gut microbiome in obese and lean twins," Nature, Nature, vol. 457(7228), pages 480-484, January.
    2. Alexandra M Schnoes & Shoshana D Brown & Igor Dodevski & Patricia C Babbitt, 2009. "Annotation Error in Public Databases: Misannotation of Molecular Function in Enzyme Superfamilies," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Chen & Clarence K Zhang & Yongmei Cheng & Shaowu Zhang & Hongyu Zhao, 2013. "A Comparison of Methods for Clustering 16S rRNA Sequences into OTUs," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    2. Yemin Lan & Qiong Wang & James R Cole & Gail L Rosen, 2012. "Using the RDP Classifier to Predict Taxonomic Novelty and Reduce the Search Space for Finding Novel Organisms," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick D Schloss, 2009. "A High-Throughput DNA Sequence Aligner for Microbial Ecology Studies," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-9, December.
    2. John Molloy & Katrina Allen & Fiona Collier & Mimi L. K. Tang & Alister C. Ward & Peter Vuillermin, 2013. "The Potential Link between Gut Microbiota and IgE-Mediated Food Allergy in Early Life," IJERPH, MDPI, vol. 10(12), pages 1-22, December.
    3. Rui Fa & Domenico Cozzetto & Cen Wan & David T Jones, 2018. "Predicting human protein function with multi-task deep neural networks," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-16, June.
    4. Bharati Patel & Kadamb Patel & Shabbir Moochhala, 2020. "Diet-Derived Post-Biotic Metabolites to Promote Microbiota Function and Human Health," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 28(2), pages 21520-21524, June.
    5. Ahmed A Metwally & Philip S Yu & Derek Reiman & Yang Dai & Patricia W Finn & David L Perkins, 2019. "Utilizing longitudinal microbiome taxonomic profiles to predict food allergy via Long Short-Term Memory networks," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-16, February.
    6. Pirjo Wacklin & Harri Mäkivuokko & Noora Alakulppi & Janne Nikkilä & Heli Tenkanen & Jarkko Räbinä & Jukka Partanen & Kari Aranko & Jaana Mättö, 2011. "Secretor Genotype (FUT2 gene) Is Strongly Associated with the Composition of Bifidobacteria in the Human Intestine," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-10, May.
    7. Yunxi Liu & R. A. Leo Elworth & Michael D. Jochum & Kjersti M. Aagaard & Todd J. Treangen, 2022. "De novo identification of microbial contaminants in low microbial biomass microbiomes with Squeegee," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. C. E. Dubé & M. Ziegler & A. Mercière & E. Boissin & S. Planes & C. A. -F. Bourmaud & C. R. Voolstra, 2021. "Naturally occurring fire coral clones demonstrate a genetic and environmental basis of microbiome composition," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Mariana F. Fernández & Iris Reina-Pérez & Juan Manuel Astorga & Andrea Rodríguez-Carrillo & Julio Plaza-Díaz & Luis Fontana, 2018. "Breast Cancer and Its Relationship with the Microbiota," IJERPH, MDPI, vol. 15(8), pages 1-20, August.
    10. Michal Brylinski & Daswanth Lingam, 2012. "eThread: A Highly Optimized Machine Learning-Based Approach to Meta-Threading and the Modeling of Protein Tertiary Structures," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-12, November.
    11. Sanjeena Subedi & Drew Neish & Stephen Bak & Zeny Feng, 2020. "Cluster analysis of microbiome data by using mixtures of Dirichlet–multinomial regression models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1163-1187, November.
    12. Shinji Fukuda & Yumiko Nakanishi & Eisuke Chikayama & Hiroshi Ohno & Tsuneo Hino & Jun Kikuchi, 2009. "Evaluation and Characterization of Bacterial Metabolic Dynamics with a Novel Profiling Technique, Real-Time Metabolotyping," PLOS ONE, Public Library of Science, vol. 4(3), pages 1-10, March.
    13. Mark Reppell & John Novembre, 2018. "Using pseudoalignment and base quality to accurately quantify microbial community composition," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-23, April.
    14. Akira R Kinjo & Haruki Nakamura, 2012. "Composite Structural Motifs of Binding Sites for Delineating Biological Functions of Proteins," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-11, February.
    15. Hannah Lees & Jonathan Swann & Simon M Poucher & Jeremy K Nicholson & Elaine Holmes & Ian D Wilson & Julian R Marchesi, 2014. "Age and Microenvironment Outweigh Genetic Influence on the Zucker Rat Microbiome," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-11, September.
    16. Xinhui Wang & Marinus J C Eijkemans & Jacco Wallinga & Giske Biesbroek & Krzysztof Trzciński & Elisabeth A M Sanders & Debby Bogaert, 2012. "Multivariate Approach for Studying Interactions between Environmental Variables and Microbial Communities," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    17. Liat Shenhav & Ori Furman & Leah Briscoe & Mike Thompson & Justin D Silverman & Itzhak Mizrahi & Eran Halperin, 2019. "Modeling the temporal dynamics of the gut microbial community in adults and infants," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-21, June.
    18. Aisling J. Daly & Jan M. Baetens & Bernard De Baets, 2018. "Ecological Diversity: Measuring the Unmeasurable," Mathematics, MDPI, vol. 6(7), pages 1-28, July.
    19. Xingqing Zhao & Jian Huang & Xuyan Zhu & Jinchun Chai & Xiaoli Ji, 2020. "Ecological Effects of Heavy Metal Pollution on Soil Microbial Community Structure and Diversity on Both Sides of a River around a Mining Area," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    20. Chihiro Morita & Hirokazu Tsuji & Tomokazu Hata & Motoharu Gondo & Shu Takakura & Keisuke Kawai & Kazufumi Yoshihara & Kiyohito Ogata & Koji Nomoto & Kouji Miyazaki & Nobuyuki Sudo, 2015. "Gut Dysbiosis in Patients with Anorexia Nervosa," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.