IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0030230.html
   My bibliography  Save this article

Two-Stage Clustering (TSC): A Pipeline for Selecting Operational Taxonomic Units for the High-Throughput Sequencing of PCR Amplicons

Author

Listed:
  • Xiao-Tao Jiang
  • Hai Zhang
  • Hua-Fang Sheng
  • Yu Wang
  • Yan He
  • Fei Zou
  • Hong-Wei Zhou

Abstract

Clustering 16S/18S rRNA amplicon sequences into operational taxonomic units (OTUs) is a critical step for the bioinformatic analysis of microbial diversity. Here, we report a pipeline for selecting OTUs with a relatively low computational demand and a high degree of accuracy. This pipeline is referred to as two-stage clustering (TSC) because it divides tags into two groups according to their abundance and clusters them sequentially. The more abundant group is clustered using a hierarchical algorithm similar to that in ESPRIT, which has a high degree of accuracy but is computationally costly for large datasets. The rarer group, which includes the majority of tags, is then heuristically clustered to improve efficiency. To further improve the computational efficiency and accuracy, two preclustering steps are implemented. To maintain clustering accuracy, all tags are grouped into an OTU depending on their pairwise Needleman-Wunsch distance. This method not only improved the computational efficiency but also mitigated the spurious OTU estimation from ‘noise’ sequences. In addition, OTUs clustered using TSC showed comparable or improved performance in beta-diversity comparisons compared to existing OTU selection methods. This study suggests that the distribution of sequencing datasets is a useful property for improving the computational efficiency and increasing the clustering accuracy of the high-throughput sequencing of PCR amplicons. The software and user guide are freely available at http://hwzhoulab.smu.edu.cn/paperdata/.

Suggested Citation

  • Xiao-Tao Jiang & Hai Zhang & Hua-Fang Sheng & Yu Wang & Yan He & Fei Zou & Hong-Wei Zhou, 2012. "Two-Stage Clustering (TSC): A Pipeline for Selecting Operational Taxonomic Units for the High-Throughput Sequencing of PCR Amplicons," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-8, January.
  • Handle: RePEc:plo:pone00:0030230
    DOI: 10.1371/journal.pone.0030230
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030230
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0030230&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0030230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter J. Turnbaugh & Micah Hamady & Tanya Yatsunenko & Brandi L. Cantarel & Alexis Duncan & Ruth E. Ley & Mitchell L. Sogin & William J. Jones & Bruce A. Roe & Jason P. Affourtit & Michael Egholm & Be, 2009. "A core gut microbiome in obese and lean twins," Nature, Nature, vol. 457(7228), pages 480-484, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick D Schloss, 2009. "A High-Throughput DNA Sequence Aligner for Microbial Ecology Studies," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-9, December.
    2. John Molloy & Katrina Allen & Fiona Collier & Mimi L. K. Tang & Alister C. Ward & Peter Vuillermin, 2013. "The Potential Link between Gut Microbiota and IgE-Mediated Food Allergy in Early Life," IJERPH, MDPI, vol. 10(12), pages 1-22, December.
    3. Bharati Patel & Kadamb Patel & Shabbir Moochhala, 2020. "Diet-Derived Post-Biotic Metabolites to Promote Microbiota Function and Human Health," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 28(2), pages 21520-21524, June.
    4. Ahmed A Metwally & Philip S Yu & Derek Reiman & Yang Dai & Patricia W Finn & David L Perkins, 2019. "Utilizing longitudinal microbiome taxonomic profiles to predict food allergy via Long Short-Term Memory networks," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-16, February.
    5. Pirjo Wacklin & Harri Mäkivuokko & Noora Alakulppi & Janne Nikkilä & Heli Tenkanen & Jarkko Räbinä & Jukka Partanen & Kari Aranko & Jaana Mättö, 2011. "Secretor Genotype (FUT2 gene) Is Strongly Associated with the Composition of Bifidobacteria in the Human Intestine," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-10, May.
    6. Yunxi Liu & R. A. Leo Elworth & Michael D. Jochum & Kjersti M. Aagaard & Todd J. Treangen, 2022. "De novo identification of microbial contaminants in low microbial biomass microbiomes with Squeegee," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. C. E. Dubé & M. Ziegler & A. Mercière & E. Boissin & S. Planes & C. A. -F. Bourmaud & C. R. Voolstra, 2021. "Naturally occurring fire coral clones demonstrate a genetic and environmental basis of microbiome composition," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    8. Mariana F. Fernández & Iris Reina-Pérez & Juan Manuel Astorga & Andrea Rodríguez-Carrillo & Julio Plaza-Díaz & Luis Fontana, 2018. "Breast Cancer and Its Relationship with the Microbiota," IJERPH, MDPI, vol. 15(8), pages 1-20, August.
    9. Thomas J Sharpton & Samantha J Riesenfeld & Steven W Kembel & Joshua Ladau & James P O'Dwyer & Jessica L Green & Jonathan A Eisen & Katherine S Pollard, 2011. "PhylOTU: A High-Throughput Procedure Quantifies Microbial Community Diversity and Resolves Novel Taxa from Metagenomic Data," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-13, January.
    10. Sanjeena Subedi & Drew Neish & Stephen Bak & Zeny Feng, 2020. "Cluster analysis of microbiome data by using mixtures of Dirichlet–multinomial regression models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1163-1187, November.
    11. Shinji Fukuda & Yumiko Nakanishi & Eisuke Chikayama & Hiroshi Ohno & Tsuneo Hino & Jun Kikuchi, 2009. "Evaluation and Characterization of Bacterial Metabolic Dynamics with a Novel Profiling Technique, Real-Time Metabolotyping," PLOS ONE, Public Library of Science, vol. 4(3), pages 1-10, March.
    12. Mark Reppell & John Novembre, 2018. "Using pseudoalignment and base quality to accurately quantify microbial community composition," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-23, April.
    13. Hannah Lees & Jonathan Swann & Simon M Poucher & Jeremy K Nicholson & Elaine Holmes & Ian D Wilson & Julian R Marchesi, 2014. "Age and Microenvironment Outweigh Genetic Influence on the Zucker Rat Microbiome," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-11, September.
    14. Xinhui Wang & Marinus J C Eijkemans & Jacco Wallinga & Giske Biesbroek & Krzysztof Trzciński & Elisabeth A M Sanders & Debby Bogaert, 2012. "Multivariate Approach for Studying Interactions between Environmental Variables and Microbial Communities," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    15. Liat Shenhav & Ori Furman & Leah Briscoe & Mike Thompson & Justin D Silverman & Itzhak Mizrahi & Eran Halperin, 2019. "Modeling the temporal dynamics of the gut microbial community in adults and infants," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-21, June.
    16. Aisling J. Daly & Jan M. Baetens & Bernard De Baets, 2018. "Ecological Diversity: Measuring the Unmeasurable," Mathematics, MDPI, vol. 6(7), pages 1-28, July.
    17. Xingqing Zhao & Jian Huang & Xuyan Zhu & Jinchun Chai & Xiaoli Ji, 2020. "Ecological Effects of Heavy Metal Pollution on Soil Microbial Community Structure and Diversity on Both Sides of a River around a Mining Area," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    18. Chihiro Morita & Hirokazu Tsuji & Tomokazu Hata & Motoharu Gondo & Shu Takakura & Keisuke Kawai & Kazufumi Yoshihara & Kiyohito Ogata & Koji Nomoto & Kouji Miyazaki & Nobuyuki Sudo, 2015. "Gut Dysbiosis in Patients with Anorexia Nervosa," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-13, December.
    19. Huang Lin & Merete Eggesbø & Shyamal Das Peddada, 2022. "Linear and nonlinear correlation estimators unveil undescribed taxa interactions in microbiome data," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    20. Koji Hosomi & Mayu Saito & Jonguk Park & Haruka Murakami & Naoko Shibata & Masahiro Ando & Takahiro Nagatake & Kana Konishi & Harumi Ohno & Kumpei Tanisawa & Attayeb Mohsen & Yi-An Chen & Hitoshi Kawa, 2022. "Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0030230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.