IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000776.html
   My bibliography  Save this article

Assimilating Seizure Dynamics

Author

Listed:
  • Ghanim Ullah
  • Steven J Schiff

Abstract

Observability of a dynamical system requires an understanding of its state—the collective values of its variables. However, existing techniques are too limited to measure all but a small fraction of the physical variables and parameters of neuronal networks. We constructed models of the biophysical properties of neuronal membrane, synaptic, and microenvironment dynamics, and incorporated them into a model-based predictor-controller framework from modern control theory. We demonstrate that it is now possible to meaningfully estimate the dynamics of small neuronal networks using as few as a single measured variable. Specifically, we assimilate noisy membrane potential measurements from individual hippocampal neurons to reconstruct the dynamics of networks of these cells, their extracellular microenvironment, and the activities of different neuronal types during seizures. We use reconstruction to account for unmeasured parts of the neuronal system, relating micro-domain metabolic processes to cellular excitability, and validate the reconstruction of cellular dynamical interactions against actual measurements. Data assimilation, the fusing of measurement with computational models, has significant potential to improve the way we observe and understand brain dynamics.Author Summary: To understand a complex system such as the weather or the brain, one needs an exhaustive detailing of the system variables and parameters. But such systems are vastly undersampled from existing technology. The alternative is to employ realistic computational models of the system dynamics to reconstruct the unobserved features. This model based state estimation is referred to as data assimilation. Modern robotics use data assimilation as the recursive predictive strategy that underlies the autonomous control performance of aerospace and terrestrial applications. We here adapt such data assimilation techniques to a computational model of the interplay of excitatory and inhibitory neurons during epileptic seizures. We show that incorporating lower scale metabolic models of potassium dynamics is essential for accuracy. We apply our strategy using data from simultaneous dual intracellular impalements of inhibitory and excitatory neurons. Our findings are, to our knowledge, the first validation of such data assimilation in neuronal dynamics.

Suggested Citation

  • Ghanim Ullah & Steven J Schiff, 2010. "Assimilating Seizure Dynamics," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-12, May.
  • Handle: RePEc:plo:pcbi00:1000776
    DOI: 10.1371/journal.pcbi.1000776
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000776
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000776&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000776?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Quentin J M Huys & Liam Paninski, 2009. "Smoothing of, and Parameter Estimation from, Noisy Biophysical Recordings," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-16, May.
    2. Yousheng Shu & Andrea Hasenstaub & David A. McCormick, 2003. "Turning on and off recurrent balanced cortical activity," Nature, Nature, vol. 423(6937), pages 288-293, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Madineh Sedigh-Sarvestani & Steven J Schiff & Bruce J Gluckman, 2012. "Reconstructing Mammalian Sleep Dynamics with Data Assimilation," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-15, November.
    2. Che, Yanqiu & Liu, Bei & Li, Huiyan & Lu, Meili & Wang, Jiang & Wei, Xile, 2017. "Robust stabilization control of bifurcations in Hodgkin-Huxley model with aid of unscented Kalman filter," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 92-99.
    3. Li, Jiajia & Wang, Rong & Du, Mengmeng & Tang, Jun & Wu, Ying, 2016. "Dynamic transition on the seizure-like neuronal activity by astrocytic calcium channel block," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 702-708.
    4. Franz Hamilton & Alun L Lloyd & Kevin B Flores, 2017. "Hybrid modeling and prediction of dynamical systems," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-20, July.
    5. Arthur, Joseph & Attarian, Adam & Hamilton, Franz & Tran, Hien, 2018. "Nonlinear Kalman filtering for censored observations," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 155-166.
    6. Li, Jiajia & Zhang, Xuan & Du, Mengmeng & Wu, Ying, 2022. "Switching behavior of the gamma power in the neuronal network modulated by the astrocytes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    7. Shen, Zhuan & Zhang, Honghui & Du, Lin & Deng, Zichen & Kurths, Jürgen, 2023. "Initiation and termination of epilepsy induced by Lévy noise: A view from the cortical neural mass model," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    8. Mengmeng Du & Jiajia Li & Liang Chen & Yuguo Yu & Ying Wu, 2018. "Astrocytic Kir4.1 channels and gap junctions account for spontaneous epileptic seizure," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashok Litwin-Kumar & Anne-Marie M Oswald & Nathaniel N Urban & Brent Doiron, 2011. "Balanced Synaptic Input Shapes the Correlation between Neural Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-14, December.
    2. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
    3. Christian Meisel & Andreas Klaus & Christian Kuehn & Dietmar Plenz, 2015. "Critical Slowing Down Governs the Transition to Neuron Spiking," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.
    4. Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    5. Joseph D Taylor & Samuel Winnall & Alain Nogaret, 2020. "Estimation of neuron parameters from imperfect observations," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-22, July.
    6. Dimitrios V Vavoulis & Volko A Straub & John A D Aston & Jianfeng Feng, 2012. "A Self-Organizing State-Space-Model Approach for Parameter Estimation in Hodgkin-Huxley-Type Models of Single Neurons," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-1, March.
    7. Eunhye Cho & Jii Kwon & Gyuwon Lee & Jiwoo Shin & Hyunsu Lee & Suk-Ho Lee & Chun Kee Chung & Jaeyoung Yoon & Won-Kyung Ho, 2024. "Net synaptic drive of fast-spiking interneurons is inverted towards inhibition in human FCD I epilepsy," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Kyriaki Sidiropoulou & Panayiota Poirazi, 2012. "Predictive Features of Persistent Activity Emergence in Regular Spiking and Intrinsic Bursting Model Neurons," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-15, April.
    9. Krishna Choudhary & Sven Berberich & Thomas T. G. Hahn & James M. McFarland & Mayank R. Mehta, 2024. "Spontaneous persistent activity and inactivity in vivo reveals differential cortico-entorhinal functional connectivity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Daniel Durstewitz, 2017. "A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-33, June.
    11. Sreedhar S Kumar & Jan Wülfing & Samora Okujeni & Joschka Boedecker & Martin Riedmiller & Ulrich Egert, 2016. "Autonomous Optimization of Targeted Stimulation of Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-22, August.
    12. Andreas Steimer & Kaspar Schindler, 2015. "Random Sampling with Interspike-Intervals of the Exponential Integrate and Fire Neuron: A Computational Interpretation of UP-States," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-26, July.
    13. Nariman Valizadeh & Majid Mirzaei & Mohammed Falah Allawi & Haitham Abdulmohsin Afan & Nuruol Syuhadaa Mohd & Aini Hussain & Ahmed El-Shafie, 2017. "Artificial intelligence and geo-statistical models for stream-flow forecasting in ungauged stations: state of the art," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1377-1392, April.
    14. Umberto Picchini & Adeline Samson, 2018. "Coupling stochastic EM and approximate Bayesian computation for parameter inference in state-space models," Computational Statistics, Springer, vol. 33(1), pages 179-212, March.
    15. Vanessa F Descalzo & Roberto Gallego & Maria V Sanchez-Vives, 2014. "Adaptation in the Visual Cortex: Influence of Membrane Trajectory and Neuronal Firing Pattern on Slow Afterpotentials," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-10, November.
    16. Weijie Ye & Xiaoying Chen, 2023. "Effects of NMDA Receptor Hypofunction on Inhibitory Control in a Two-Layer Neural Circuit Model," Mathematics, MDPI, vol. 11(19), pages 1-12, September.
    17. Borges, F.S. & Protachevicz, P.R. & Pena, R.F.O. & Lameu, E.L. & Higa, G.S.V. & Kihara, A.H. & Matias, F.S. & Antonopoulos, C.G. & de Pasquale, R. & Roque, A.C. & Iarosz, K.C. & Ji, P. & Batista, A.M., 2020. "Self-sustained activity of low firing rate in balanced networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    18. Gustavo Deco & Daniel Martí & Anders Ledberg & Ramon Reig & Maria V Sanchez Vives, 2009. "Effective Reduced Diffusion-Models: A Data Driven Approach to the Analysis of Neuronal Dynamics," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-10, December.
    19. Robert R Kerr & Anthony N Burkitt & Doreen A Thomas & Matthieu Gilson & David B Grayden, 2013. "Delay Selection by Spike-Timing-Dependent Plasticity in Recurrent Networks of Spiking Neurons Receiving Oscillatory Inputs," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-19, February.
    20. Shrey Dutta & Kartik K. Iyer & Sampsa Vanhatalo & Michael Breakspear & James A. Roberts, 2023. "Mechanisms underlying pathological cortical bursts during metabolic depletion," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.