IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002788.html
   My bibliography  Save this article

Reconstructing Mammalian Sleep Dynamics with Data Assimilation

Author

Listed:
  • Madineh Sedigh-Sarvestani
  • Steven J Schiff
  • Bruce J Gluckman

Abstract

Data assimilation is a valuable tool in the study of any complex system, where measurements are incomplete, uncertain, or both. It enables the user to take advantage of all available information including experimental measurements and short-term model forecasts of a system. Although data assimilation has been used to study other biological systems, the study of the sleep-wake regulatory network has yet to benefit from this toolset. We present a data assimilation framework based on the unscented Kalman filter (UKF) for combining sparse measurements together with a relatively high-dimensional nonlinear computational model to estimate the state of a model of the sleep-wake regulatory system. We demonstrate with simulation studies that a few noisy variables can be used to accurately reconstruct the remaining hidden variables. We introduce a metric for ranking relative partial observability of computational models, within the UKF framework, that allows us to choose the optimal variables for measurement and also provides a methodology for optimizing framework parameters such as UKF covariance inflation. In addition, we demonstrate a parameter estimation method that allows us to track non-stationary model parameters and accommodate slow dynamics not included in the UKF filter model. Finally, we show that we can even use observed discretized sleep-state, which is not one of the model variables, to reconstruct model state and estimate unknown parameters. Sleep is implicated in many neurological disorders from epilepsy to schizophrenia, but simultaneous observation of the many brain components that regulate this behavior is difficult. We anticipate that this data assimilation framework will enable better understanding of the detailed interactions governing sleep and wake behavior and provide for better, more targeted, therapies. Author Summary: Mathematical models are developed to better understand interactions between components of a system that together govern the overall behavior. Mathematical models of sleep have helped to elucidate the neuronal cell groups that are involved in promoting sleep and wake behavior and the transitions between them. However, to be able to take full advantage of these models one must be able to estimate the value of all included variables accurately. Data assimilation refers to methods that allow the user to combine noisy measurements of just a few system variables with the mathematical model of that system to estimate all variables, including those originally inaccessible for measurement. Using these techniques we show that we can reconstruct the unmeasured variables and parameters of a mathematical model of the sleep-wake network. These reconstructed estimates can then be used to better understand the underlying neuronal behavior that results in sleep and wake activity. Because sleep is implicated in a wide array of neurological disorders from epilepsy to schizophrenia, we anticipate that this framework will enable better understanding of the link between sleep and the rest of the brain and provide for better, more targeted, therapies.

Suggested Citation

  • Madineh Sedigh-Sarvestani & Steven J Schiff & Bruce J Gluckman, 2012. "Reconstructing Mammalian Sleep Dynamics with Data Assimilation," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-15, November.
  • Handle: RePEc:plo:pcbi00:1002788
    DOI: 10.1371/journal.pcbi.1002788
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002788
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002788&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002788?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ghanim Ullah & Steven J Schiff, 2010. "Assimilating Seizure Dynamics," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur, Joseph & Attarian, Adam & Hamilton, Franz & Tran, Hien, 2018. "Nonlinear Kalman filtering for censored observations," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 155-166.
    2. Che, Yanqiu & Liu, Bei & Li, Huiyan & Lu, Meili & Wang, Jiang & Wei, Xile, 2017. "Robust stabilization control of bifurcations in Hodgkin-Huxley model with aid of unscented Kalman filter," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 92-99.
    3. Li, Jiajia & Wang, Rong & Du, Mengmeng & Tang, Jun & Wu, Ying, 2016. "Dynamic transition on the seizure-like neuronal activity by astrocytic calcium channel block," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 702-708.
    4. Shen, Zhuan & Zhang, Honghui & Du, Lin & Deng, Zichen & Kurths, Jürgen, 2023. "Initiation and termination of epilepsy induced by Lévy noise: A view from the cortical neural mass model," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    5. Franz Hamilton & Alun L Lloyd & Kevin B Flores, 2017. "Hybrid modeling and prediction of dynamical systems," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-20, July.
    6. Li, Jiajia & Zhang, Xuan & Du, Mengmeng & Wu, Ying, 2022. "Switching behavior of the gamma power in the neuronal network modulated by the astrocytes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    7. Mengmeng Du & Jiajia Li & Liang Chen & Yuguo Yu & Ying Wu, 2018. "Astrocytic Kir4.1 channels and gap junctions account for spontaneous epileptic seizure," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-19, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.