IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v4y2015i2p378-412d49561.html
   My bibliography  Save this article

Landscape Epidemiology Modeling Using an Agent-Based Model and a Geographic Information System

Author

Listed:
  • S. M. Niaz Arifin

    (Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA)

  • Rumana Reaz Arifin

    (Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA)

  • Dilkushi De Alwis Pitts

    (Center for Research Computing, University of Notre Dame, Notre Dame, IN 46556, USA)

  • M. Sohel Rahman

    (Department of Computer Science and Engineering (CSE), Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh)

  • Sara Nowreen

    (Institute of Water and Flood Management (IWFM), Bangladesh University of Engineering andTechnology (BUET), Dhaka 1000, Bangladesh)

  • Gregory R. Madey

    (Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA)

  • Frank H. Collins

    (Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
    Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA)

Abstract

A landscape epidemiology modeling framework is presented which integrates the simulation outputs from an established spatial agent-based model (ABM) of malaria with a geographic information system (GIS). For a study area in Kenya, five landscape scenarios are constructed with varying coverage levels of two mosquito-control interventions. For each scenario, maps are presented to show the average distributions of three output indices obtained from the results of 750 simulation runs. Hot spot analysis is performed to detect statistically significant hot spots and cold spots. Additional spatial analysis is conducted using ordinary kriging with circular semivariograms for all scenarios. The integration of epidemiological simulation-based results with spatial analyses techniques within a single modeling framework can be a valuable tool for conducting a variety of disease control activities such as exploring new biological insights, monitoring epidemiological landscape changes, and guiding resource allocation for further investigation.

Suggested Citation

  • S. M. Niaz Arifin & Rumana Reaz Arifin & Dilkushi De Alwis Pitts & M. Sohel Rahman & Sara Nowreen & Gregory R. Madey & Frank H. Collins, 2015. "Landscape Epidemiology Modeling Using an Agent-Based Model and a Geographic Information System," Land, MDPI, vol. 4(2), pages 1-35, May.
  • Handle: RePEc:gam:jlands:v:4:y:2015:i:2:p:378-412:d:49561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/4/2/378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/4/2/378/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter W Gething & Anand P Patil & Simon I Hay, 2010. "Quantifying Aggregated Uncertainty in Plasmodium falciparum Malaria Prevalence and Populations at Risk via Efficient Space-Time Geostatistical Joint Simulation," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-12, April.
    2. Peter Diggle & Rana Moyeed & Barry Rowlingson & Madeleine Thomson, 2002. "Childhood malaria in the Gambia: a case‐study in model‐based geostatistics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(4), pages 493-506, October.
    3. Geoffrey M. Jacquez, 2000. "Spatial analysis in epidemiology: Nascent science or a failure of GIS?," Journal of Geographical Systems, Springer, vol. 2(1), pages 91-97, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James D. A. Millington & John Wainwright, 2016. "Comparative Approaches for Innovation in Agent-Based Modelling of Landscape Change," Land, MDPI, vol. 5(2), pages 1-4, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kandala, Ngianga-Bakwin & Magadi, Monica Akinyi & Madise, Nyovani Janet, 2006. "An investigation of district spatial variations of childhood diarrhoea and fever morbidity in Malawi," Social Science & Medicine, Elsevier, vol. 62(5), pages 1138-1152, March.
    2. Saturnino Luz & Masood Masoodian, 2022. "Exploring Environmental and Geographical Factors Influencing the Spread of Infectious Diseases with Interactive Maps," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    3. Renaud Marti & Zhichao Li & Thibault Catry & Emmanuel Roux & Morgan Mangeas & Pascal Handschumacher & Jean Gaudart & Annelise Tran & Laurent Demagistri & Jean-François Faure & José Joaquín Carvajal & , 2020. "A Mapping Review on Urban Landscape Factors of Dengue Retrieved from Earth Observation Data, GIS Techniques, and Survey Questionnaires," Post-Print hal-02682042, HAL.
    4. Peter W Gething & Anand P Patil & Simon I Hay, 2010. "Quantifying Aggregated Uncertainty in Plasmodium falciparum Malaria Prevalence and Populations at Risk via Efficient Space-Time Geostatistical Joint Simulation," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-12, April.
    5. Victor De Oliveira, 2017. "Geostatistical Binary Data: Models, Properties And Connections," Working Papers 0151mss, College of Business, University of Texas at San Antonio.
    6. Nathan H. Schumaker & Sydney M. Watkins, 2021. "Adding Space to Disease Models: A Case Study with COVID-19 in Oregon, USA," Land, MDPI, vol. 10(4), pages 1-13, April.
    7. Benjamin Adams, 2015. "Finding similar places using the observation-to-generalization place model," Journal of Geographical Systems, Springer, vol. 17(2), pages 137-156, April.
    8. Yun Bai & Jian Kang & Peter X.-K. Song, 2014. "Efficient pairwise composite likelihood estimation for spatial-clustered data," Biometrics, The International Biometric Society, vol. 70(3), pages 661-670, September.
    9. Sahar Zarmehri & Ephraim M. Hanks & Lin Lin, 2021. "A Sample Covariance-Based Approach For Spatial Binary Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 220-249, June.
    10. I. Gede Nyoman M. Jaya & Henk Folmer, 2021. "Bayesian spatiotemporal forecasting and mapping of COVID‐19 risk with application to West Java Province, Indonesia," Journal of Regional Science, Wiley Blackwell, vol. 61(4), pages 849-881, September.
    11. Tao Hu & Qingyun Du & Fu Ren & Shi Liang & Denan Lin & Jiajia Li & Yan Chen, 2014. "Spatial Analysis of the Home Addresses of Hospital Patients with Hepatitis B Infection or Hepatoma in Shenzhen, China from 2010 to 2012," IJERPH, MDPI, vol. 11(3), pages 1-13, March.
    12. Peter J. Diggle & Emanuele Giorgi, 2016. "Model-Based Geostatistics for Prevalence Mapping in Low-Resource Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1096-1120, July.
    13. Melissa Silva & Iuria Betco & César Capinha & Rita Roquette & Cláudia M. Viana & Jorge Rocha, 2022. "Spatiotemporal Dynamics of COVID-19 Infections in Mainland Portugal," Sustainability, MDPI, vol. 14(16), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:4:y:2015:i:2:p:378-412:d:49561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.