IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000286.html
   My bibliography  Save this article

The Temporal Winner-Take-All Readout

Author

Listed:
  • Maoz Shamir

Abstract

How can the central nervous system make accurate decisions about external stimuli at short times on the basis of the noisy responses of nerve cell populations? It has been suggested that spike time latency is the source of fast decisions. Here, we propose a simple and fast readout mechanism, the temporal Winner-Take-All (tWTA), and undertake a study of its accuracy. The tWTA is studied in the framework of a statistical model for the dynamic response of a nerve cell population to an external stimulus. Each cell is characterized by a preferred stimulus, a unique value of the external stimulus for which it responds fastest. The tWTA estimate for the stimulus is the preferred stimulus of the cell that fired the first spike in the entire population. We then pose the questions: How accurate is the tWTA readout? What are the parameters that govern this accuracy? What are the effects of noise correlations and baseline firing? We find that tWTA sensitivity to the stimulus grows algebraically fast with the number of cells in the population, N, in contrast to the logarithmic slow scaling of the conventional rate-WTA sensitivity with N. Noise correlations in first-spike times of different cells can limit the accuracy of the tWTA readout, even in the limit of large N, similar to the effect that has been observed in population coding theory. We show that baseline firing also has a detrimental effect on tWTA accuracy. We suggest a generalization of the tWTA, the n-tWTA, which estimates the stimulus by the identity of the group of cells firing the first n spikes and show how this simple generalization can overcome the detrimental effect of baseline firing. Thus, the tWTA can provide fast and accurate responses discriminating between a small number of alternatives. High accuracy in estimation of a continuous stimulus can be obtained using the n-tWTA.Author Summary: Considerable experimental as well as theoretical effort has been devoted to the investigation of the neural code. The traditional approach has been to study the information content of the total neural spike count during a long period of time. However, in many cases, the central nervous system is required to estimate the external stimulus at much shorter times. What readout mechanism could account for such fast decisions? We suggest a readout mechanism that estimates the external stimulus by the first spike in the population, the tWTA. We show that the tWTA can account for accurate discriminations between a small number of choices. We find that the accuracy of the tWTA is limited by the neuronal baseline firing. We further find that, due to baseline firing, the single first spike does not encode sufficient information for estimating a continuous variable, such as the direction of motion of a visual stimulus, with fine resolution. In such cases, fast and accurate decisions can be obtained by a generalization of the tWTA to a readout that estimates the stimulus by the first n spikes fire by the population, where n is larger than the mean number of baseline spikes in the population.

Suggested Citation

  • Maoz Shamir, 2009. "The Temporal Winner-Take-All Readout," PLOS Computational Biology, Public Library of Science, vol. 5(2), pages 1-13, February.
  • Handle: RePEc:plo:pcbi00:1000286
    DOI: 10.1371/journal.pcbi.1000286
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000286
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000286&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard H. R. Hahnloser & Rahul Sarpeshkar & Misha A. Mahowald & Rodney J. Douglas & H. Sebastian Seung, 2000. "Correction: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit," Nature, Nature, vol. 408(6815), pages 1012-1012, December.
    2. Richard H. R. Hahnloser & Rahul Sarpeshkar & Misha A. Mahowald & Rodney J. Douglas & H. Sebastian Seung, 2000. "Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit," Nature, Nature, vol. 405(6789), pages 947-951, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Gütig & Tim Gollisch & Haim Sompolinsky & Markus Meister, 2013. "Computing Complex Visual Features with Retinal Spike Times," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-15, January.
    2. Oren Shriki & Adam Kohn & Maoz Shamir, 2012. "Fast Coding of Orientation in Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed A Metwally & Philip S Yu & Derek Reiman & Yang Dai & Patricia W Finn & David L Perkins, 2019. "Utilizing longitudinal microbiome taxonomic profiles to predict food allergy via Long Short-Term Memory networks," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-16, February.
    2. Kim, Seongsu & Kim, Junghwan, 2023. "Assessing fuel economy and NOx emissions of a hydrogen engine bus using neural network algorithms for urban mass transit systems," Energy, Elsevier, vol. 275(C).
    3. Zhang, Wen & Yan, Shaoshan & Li, Jian & Tian, Xin & Yoshida, Taketoshi, 2022. "Credit risk prediction of SMEs in supply chain finance by fusing demographic and behavioral data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    4. Oostwal, Elisa & Straat, Michiel & Biehl, Michael, 2021. "Hidden unit specialization in layered neural networks: ReLU vs. sigmoidal activation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    5. Phattara Khumprom & Nita Yodo, 2019. "A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning Algorithm," Energies, MDPI, vol. 12(4), pages 1-21, February.
    6. Joanne C Wen & Cecilia S Lee & Pearse A Keane & Sa Xiao & Ariel S Rokem & Philip P Chen & Yue Wu & Aaron Y Lee, 2019. "Forecasting future Humphrey Visual Fields using deep learning," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-14, April.
    7. Kei Nakagawa & Masaya Abe & Junpei Komiyama, 2019. "A Robust Transferable Deep Learning Framework for Cross-sectional Investment Strategy," Papers 1910.01491, arXiv.org.
    8. Jingfen Lan & Ziheng Liao & A. K. Alvi Haque & Qiang Yu & Kun Xie & Yang Guo, 2024. "CNVbd: A Method for Copy Number Variation Detection and Boundary Search," Mathematics, MDPI, vol. 12(3), pages 1-15, January.
    9. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    10. Baiti-Ahmad Awaluddin & Chun-Tang Chao & Juing-Shian Chiou, 2023. "Investigating Effective Geometric Transformation for Image Augmentation to Improve Static Hand Gestures with a Pre-Trained Convolutional Neural Network," Mathematics, MDPI, vol. 11(23), pages 1-23, November.
    11. González-Muñiz, Ana & Díaz, Ignacio & Cuadrado, Abel A. & García-Pérez, Diego, 2022. "Health indicator for machine condition monitoring built in the latent space of a deep autoencoder," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    12. Ke, Shaowei & Zhao, Chen, 2024. "From local utility to neural networks," Journal of Mathematical Economics, Elsevier, vol. 113(C).
    13. Hancock, Thomas O. & Broekaert, Jan & Hess, Stephane & Choudhury, Charisma F., 2020. "Quantum probability: A new method for modelling travel behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 165-198.
    14. Bernhard Nessler & Michael Pfeiffer & Lars Buesing & Wolfgang Maass, 2013. "Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-30, April.
    15. Artem Kuriksha, 2021. "An Economy of Neural Networks: Learning from Heterogeneous Experiences," Papers 2110.11582, arXiv.org.
    16. Bodendorf, Frank & Xie, Qiao & Merkl, Philipp & Franke, Jörg, 2022. "A multi-perspective approach to support collaborative cost management in supplier-buyer dyads," International Journal of Production Economics, Elsevier, vol. 245(C).
    17. Li Zhang & Qun Hao & Jie Cao, 2023. "Attention-Based Fine-Grained Lightweight Architecture for Fuji Apple Maturity Classification in an Open-World Orchard Environment," Agriculture, MDPI, vol. 13(2), pages 1-20, January.
    18. Gianluca De Nard & Simon Hediger & Markus Leippold, 2022. "Subsampled factor models for asset pricing: The rise of Vasa," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1217-1247, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.