IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002536.html
   My bibliography  Save this article

Fast Coding of Orientation in Primary Visual Cortex

Author

Listed:
  • Oren Shriki
  • Adam Kohn
  • Maoz Shamir

Abstract

Understanding how populations of neurons encode sensory information is a major goal of systems neuroscience. Attempts to answer this question have focused on responses measured over several hundred milliseconds, a duration much longer than that frequently used by animals to make decisions about the environment. How reliably sensory information is encoded on briefer time scales, and how best to extract this information, is unknown. Although it has been proposed that neuronal response latency provides a major cue for fast decisions in the visual system, this hypothesis has not been tested systematically and in a quantitative manner. Here we use a simple ‘race to threshold’ readout mechanism to quantify the information content of spike time latency of primary visual (V1) cortical cells to stimulus orientation. We find that many V1 cells show pronounced tuning of their spike latency to stimulus orientation and that almost as much information can be extracted from spike latencies as from firing rates measured over much longer durations. To extract this information, stimulus onset must be estimated accurately. We show that the responses of cells with weak tuning of spike latency can provide a reliable onset detector. We find that spike latency information can be pooled from a large neuronal population, provided that the decision threshold is scaled linearly with the population size, yielding a processing time of the order of a few tens of milliseconds. Our results provide a novel mechanism for extracting information from neuronal populations over the very brief time scales in which behavioral judgments must sometimes be made. Author Summary: How can humans and animals make complex decisions on time scales as short as 100 ms? The information required for such decisions is coded in neural activity and should be read out on a very brief time scale. Traditional approaches to coding of neural information rely on the number of electrical pulses, or spikes, that neurons fire in a certain time window. Although this type of code is likely to be used by the brain for higher cognitive tasks, it may be too slow for fast decisions. Here, we explore an alternative code which is based on the latency of spikes with respect to a reference signal. By analyzing the simultaneous responses of many cells in monkey visual cortex, we show that information about the orientation of visual stimuli can be extracted reliably from spike latencies on very short time scales.

Suggested Citation

  • Oren Shriki & Adam Kohn & Maoz Shamir, 2012. "Fast Coding of Orientation in Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-16, June.
  • Handle: RePEc:plo:pcbi00:1002536
    DOI: 10.1371/journal.pcbi.1002536
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002536
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002536&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maoz Shamir, 2009. "The Temporal Winner-Take-All Readout," PLOS Computational Biology, Public Library of Science, vol. 5(2), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Yu & Huajin Tang & Kay Chen Tan & Haizhou Li, 2013. "Precise-Spike-Driven Synaptic Plasticity: Learning Hetero-Association of Spatiotemporal Spike Patterns," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Gütig & Tim Gollisch & Haim Sompolinsky & Markus Meister, 2013. "Computing Complex Visual Features with Retinal Spike Times," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-15, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.