IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0214875.html
   My bibliography  Save this article

Forecasting future Humphrey Visual Fields using deep learning

Author

Listed:
  • Joanne C Wen
  • Cecilia S Lee
  • Pearse A Keane
  • Sa Xiao
  • Ariel S Rokem
  • Philip P Chen
  • Yue Wu
  • Aaron Y Lee

Abstract

Purpose: To determine if deep learning networks could be trained to forecast future 24–2 Humphrey Visual Fields (HVFs). Methods: All data points from consecutive 24–2 HVFs from 1998 to 2018 were extracted from a university database. Ten-fold cross validation with a held out test set was used to develop the three main phases of model development: model architecture selection, dataset combination selection, and time-interval model training with transfer learning, to train a deep learning artificial neural network capable of generating a point-wise visual field prediction. The point-wise mean absolute error (PMAE) and difference in Mean Deviation (MD) between predicted and actual future HVF were calculated. Results: More than 1.7 million perimetry points were extracted to the hundredth decibel from 32,443 24–2 HVFs. The best performing model with 20 million trainable parameters, CascadeNet-5, was selected. The overall point-wise PMAE for the test set was 2.47 dB (95% CI: 2.45 dB to 2.48 dB), and deep learning showed a statistically significant improvement over linear models. The 100 fully trained models successfully predicted future HVFs in glaucomatous eyes up to 5.5 years in the future with a correlation of 0.92 between the MD of predicted and actual future HVF and an average difference of 0.41 dB. Conclusions: Using unfiltered real-world datasets, deep learning networks show the ability to not only learn spatio-temporal HVF changes but also to generate predictions for future HVFs up to 5.5 years, given only a single HVF.

Suggested Citation

  • Joanne C Wen & Cecilia S Lee & Pearse A Keane & Sa Xiao & Ariel S Rokem & Philip P Chen & Yue Wu & Aaron Y Lee, 2019. "Forecasting future Humphrey Visual Fields using deep learning," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-14, April.
  • Handle: RePEc:plo:pone00:0214875
    DOI: 10.1371/journal.pone.0214875
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0214875
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0214875&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0214875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard H. R. Hahnloser & Rahul Sarpeshkar & Misha A. Mahowald & Rodney J. Douglas & H. Sebastian Seung, 2000. "Correction: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit," Nature, Nature, vol. 408(6815), pages 1012-1012, December.
    2. Richard H. R. Hahnloser & Rahul Sarpeshkar & Misha A. Mahowald & Rodney J. Douglas & H. Sebastian Seung, 2000. "Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit," Nature, Nature, vol. 405(6789), pages 947-951, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed A Metwally & Philip S Yu & Derek Reiman & Yang Dai & Patricia W Finn & David L Perkins, 2019. "Utilizing longitudinal microbiome taxonomic profiles to predict food allergy via Long Short-Term Memory networks," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-16, February.
    2. Kim, Seongsu & Kim, Junghwan, 2023. "Assessing fuel economy and NOx emissions of a hydrogen engine bus using neural network algorithms for urban mass transit systems," Energy, Elsevier, vol. 275(C).
    3. Zhang, Wen & Yan, Shaoshan & Li, Jian & Tian, Xin & Yoshida, Taketoshi, 2022. "Credit risk prediction of SMEs in supply chain finance by fusing demographic and behavioral data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    4. Maoz Shamir, 2009. "The Temporal Winner-Take-All Readout," PLOS Computational Biology, Public Library of Science, vol. 5(2), pages 1-13, February.
    5. Oostwal, Elisa & Straat, Michiel & Biehl, Michael, 2021. "Hidden unit specialization in layered neural networks: ReLU vs. sigmoidal activation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    6. Phattara Khumprom & Nita Yodo, 2019. "A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning Algorithm," Energies, MDPI, vol. 12(4), pages 1-21, February.
    7. Kei Nakagawa & Masaya Abe & Junpei Komiyama, 2019. "A Robust Transferable Deep Learning Framework for Cross-sectional Investment Strategy," Papers 1910.01491, arXiv.org.
    8. Jingfen Lan & Ziheng Liao & A. K. Alvi Haque & Qiang Yu & Kun Xie & Yang Guo, 2024. "CNVbd: A Method for Copy Number Variation Detection and Boundary Search," Mathematics, MDPI, vol. 12(3), pages 1-15, January.
    9. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    10. Baiti-Ahmad Awaluddin & Chun-Tang Chao & Juing-Shian Chiou, 2023. "Investigating Effective Geometric Transformation for Image Augmentation to Improve Static Hand Gestures with a Pre-Trained Convolutional Neural Network," Mathematics, MDPI, vol. 11(23), pages 1-23, November.
    11. González-Muñiz, Ana & Díaz, Ignacio & Cuadrado, Abel A. & García-Pérez, Diego, 2022. "Health indicator for machine condition monitoring built in the latent space of a deep autoencoder," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    12. Ke, Shaowei & Zhao, Chen, 2024. "From local utility to neural networks," Journal of Mathematical Economics, Elsevier, vol. 113(C).
    13. Hancock, Thomas O. & Broekaert, Jan & Hess, Stephane & Choudhury, Charisma F., 2020. "Quantum probability: A new method for modelling travel behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 165-198.
    14. Bernhard Nessler & Michael Pfeiffer & Lars Buesing & Wolfgang Maass, 2013. "Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-30, April.
    15. Artem Kuriksha, 2021. "An Economy of Neural Networks: Learning from Heterogeneous Experiences," Papers 2110.11582, arXiv.org.
    16. Bodendorf, Frank & Xie, Qiao & Merkl, Philipp & Franke, Jörg, 2022. "A multi-perspective approach to support collaborative cost management in supplier-buyer dyads," International Journal of Production Economics, Elsevier, vol. 245(C).
    17. Li Zhang & Qun Hao & Jie Cao, 2023. "Attention-Based Fine-Grained Lightweight Architecture for Fuji Apple Maturity Classification in an Open-World Orchard Environment," Agriculture, MDPI, vol. 13(2), pages 1-20, January.
    18. Gianluca De Nard & Simon Hediger & Markus Leippold, 2022. "Subsampled factor models for asset pricing: The rise of Vasa," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1217-1247, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0214875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.