IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v139y2020icp165-198.html
   My bibliography  Save this article

Quantum probability: A new method for modelling travel behaviour

Author

Listed:
  • Hancock, Thomas O.
  • Broekaert, Jan
  • Hess, Stephane
  • Choudhury, Charisma F.

Abstract

There has been an increasing effort to improve the behavioural realism of mathematical models of choice, resulting in efforts to move away from random utility maximisation (RUM) models. Some new insights have been generated with, for example, models based on random regret minimisation (RRM, μ-RRM). Notwithstanding work using for example Decision Field Theory (DFT), many of the alternatives to RUM tested on real-world data have however only looked at only modest departures from RUM, and differences in results have consequently been small. In the present study, we address this research gap again by investigating the applicability of models based on quantum theory. These models, which are substantially different from the state-of-the-art choice modelling techniques, emphasise the importance of contextual effects, state dependence, interferences and the impact of choice or question order. As a result, quantum probability models have had some success in better explaining several phenomena in cognitive psychology. In this paper, we consider how best to operationalise quantum probability into a choice model. Additionally, we test the quantum model frameworks on a best/worst route choice dataset and demonstrate that they find useful transformations to capture differences between the attributes important in a most favoured alternative compared to that of the least favoured alternative. Similar transformations can also be used to efficiently capture contextual effects in a dataset where the order of the attributes and alternatives are manipulated. Overall, it appears that models incorporating quantum concepts hold significant promise in improving the state-of-the-art travel choice modelling paradigm through their adaptability and efficient modelling of contextual changes.

Suggested Citation

  • Hancock, Thomas O. & Broekaert, Jan & Hess, Stephane & Choudhury, Charisma F., 2020. "Quantum probability: A new method for modelling travel behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 165-198.
  • Handle: RePEc:eee:transb:v:139:y:2020:i:c:p:165-198
    DOI: 10.1016/j.trb.2020.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261520303283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2020.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guevara, C. Angelo & Fukushi, Mitsuyoshi, 2016. "Modeling the decoy effect with context-RUM Models: Diagrammatic analysis and empirical evidence from route choice SP and mode choice RP case studies," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 318-337.
    2. Masiero, Lorenzo & Hensher, David A., 2010. "Analyzing loss aversion and diminishing sensitivity in a freight transport stated choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 349-358, June.
    3. Yu, Jiangbo Gabriel & Jayakrishnan, R., 2018. "A quantum cognition model for bridging stated and revealed preference," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 263-280.
    4. Hancock, Thomas O. & Hess, Stephane & Choudhury, Charisma F., 2018. "Decision field theory: Improvements to current methodology and comparisons with standard choice modelling techniques," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 18-40.
    5. Hess, Stephane & Daly, Andrew & Dekker, Thijs & Cabral, Manuel Ojeda & Batley, Richard, 2017. "A framework for capturing heterogeneity, heteroskedasticity, non-linearity, reference dependence and design artefacts in value of time research," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 126-149.
    6. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    7. Leong, Waiyan & Hensher, David A., 2014. "Relative advantage maximisation as a model of context dependence for binary choice data," Journal of choice modelling, Elsevier, vol. 11(C), pages 30-42.
    8. Jérôme Busemeyer & Ariane Lambert-Mogiliansky & Zheng Wang, 2009. "Empirical Comparison of Markov and Quantum models of decision-making," PSE-Ecole d'économie de Paris (Postprint) halshs-00754332, HAL.
    9. Busemeyer, Jerome R. & Townsend, James T., 1992. "Fundamental derivations from decision field theory," Mathematical Social Sciences, Elsevier, vol. 23(3), pages 255-282, June.
    10. Hess, Stephane & Rose, John M. & Hensher, David A., 2008. "Asymmetric preference formation in willingness to pay estimates in discrete choice models," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 847-863, September.
    11. Lipovetsky, Stan, 2018. "Quantum paradigm of probability amplitude and complex utility in entangled discrete choice modeling," Journal of choice modelling, Elsevier, vol. 27(C), pages 62-73.
    12. Richard H. R. Hahnloser & Rahul Sarpeshkar & Misha A. Mahowald & Rodney J. Douglas & H. Sebastian Seung, 2000. "Correction: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit," Nature, Nature, vol. 408(6815), pages 1012-1012, December.
    13. Stathopoulos, Amanda & Hess, Stephane, 2012. "Revisiting reference point formation, gains–losses asymmetry and non-linear sensitivities with an emphasis on attribute specific treatment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1673-1689.
    14. Hess, Stephane & Palma, David, 2019. "Apollo: A flexible, powerful and customisable freeware package for choice model estimation and application," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    15. Arne Henningsen & Ott Toomet, 2011. "maxLik: A package for maximum likelihood estimation in R," Computational Statistics, Springer, vol. 26(3), pages 443-458, September.
    16. Bagarello,Fabio, 2019. "Quantum Concepts in the Social, Ecological and Biological Sciences," Cambridge Books, Cambridge University Press, number 9781108492126, September.
    17. Ben-Akiva, Moshe & McFadden, Daniel & Train, Kenneth, 2019. "Foundations of Stated Preference Elicitation: Consumer Behavior and Choice-based Conjoint Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 10(1-2), pages 1-144, January.
    18. Richard Batley & Thijs Dekker, 2019. "The Intuition Behind Income Effects of Price Changes in Discrete Choice Models, and a Simple Method for Measuring the Compensating Variation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(1), pages 337-366, September.
    19. Chorus, Caspar G. & Arentze, Theo A. & Timmermans, Harry J.P., 2008. "A Random Regret-Minimization model of travel choice," Transportation Research Part B: Methodological, Elsevier, vol. 42(1), pages 1-18, January.
    20. Axhausen, Kay W. & Hess, Stephane & König, Arnd & Abay, Georg & Bates, John J. & Bierlaire, Michel, 2008. "Income and distance elasticities of values of travel time savings: New Swiss results," Transport Policy, Elsevier, vol. 15(3), pages 173-185, May.
    21. Jérôme Busemeyer & Ariane Lambert-Mogiliansky & Zheng Wang, 2009. "Empirical Comparison of Markov and Quantum models of decision-making," Post-Print halshs-00754332, HAL.
    22. Maria Cunha-e-Sá & Lívia Madureira & Luis Nunes & Vladimir Otrachshenko, 2012. "Protesting and Justifying: A Latent Class Model for Contingent Valuation with Attitudinal Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(4), pages 531-548, August.
    23. Dekker, Thijs, 2014. "Indifference based value of time measures for Random Regret Minimisation models," Journal of choice modelling, Elsevier, vol. 12(C), pages 10-20.
    24. van Cranenburgh, Sander & Guevara, Cristian Angelo & Chorus, Caspar G., 2015. "New insights on random regret minimization models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 91-109.
    25. M. Bierlaire & M. Thémans & N. Zufferey, 2010. "A Heuristic for Nonlinear Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 59-70, February.
    26. Pierre-Alexandre Mahieu & Romain Crastes & Jordan Louviere & Ewa Zawojska, 2016. "Rewarding truthful-telling in stated preference studies," Working Papers 2016-33, Faculty of Economic Sciences, University of Warsaw.
    27. Stephane Hess & Andrew Daly & Richard Batley, 2018. "Revisiting consistency with random utility maximisation: theory and implications for practical work," Theory and Decision, Springer, vol. 84(2), pages 181-204, March.
    28. Richard H. R. Hahnloser & Rahul Sarpeshkar & Misha A. Mahowald & Rodney J. Douglas & H. Sebastian Seung, 2000. "Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit," Nature, Nature, vol. 405(6789), pages 947-951, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    2. Hancock, Thomas O. & Broekaert, Jan & Hess, Stephane & Choudhury, Charisma F., 2020. "Quantum choice models: A flexible new approach for understanding moral decision-making," Journal of choice modelling, Elsevier, vol. 37(C).
    3. Epping, Gunnar P. & Kvam, Peter D. & Pleskac, Timothy J. & Busemeyer, Jerome R., 2023. "Open system model of choice and response time," Journal of choice modelling, Elsevier, vol. 49(C).
    4. Hancock, Thomas O. & Hess, Stephane & Marley, A.A.J. & Choudhury, Charisma F., 2021. "An accumulation of preference: Two alternative dynamic models for understanding transport choices," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 250-282.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hancock, Thomas O. & Hess, Stephane & Marley, A.A.J. & Choudhury, Charisma F., 2021. "An accumulation of preference: Two alternative dynamic models for understanding transport choices," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 250-282.
    2. Hancock, Thomas O. & Hess, Stephane & Choudhury, Charisma F., 2018. "Decision field theory: Improvements to current methodology and comparisons with standard choice modelling techniques," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 18-40.
    3. Hancock, Thomas O. & Broekaert, Jan & Hess, Stephane & Choudhury, Charisma F., 2020. "Quantum choice models: A flexible new approach for understanding moral decision-making," Journal of choice modelling, Elsevier, vol. 37(C).
    4. Scott, Anthony & Witt, Julia, 2020. "Loss aversion, reference dependence and diminishing sensitivity in choice experiments," Journal of choice modelling, Elsevier, vol. 37(C).
    5. van Cranenburgh, Sander & Rose, John M. & Chorus, Caspar G., 2018. "On the robustness of efficient experimental designs towards the underlying decision rule," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 50-64.
    6. Stephane Hess & Andrew Daly & Maria Börjesson, 2020. "A critical appraisal of the use of simple time-money trade-offs for appraisal value of travel time measures," Transportation, Springer, vol. 47(3), pages 1541-1570, June.
    7. Geržinič, Nejc & van Cranenburgh, Sander & Cats, Oded & Lancsar, Emily & Chorus, Caspar, 2021. "Estimating decision rule differences between ‘best’ and ‘worst’ choices in a sequential best worst discrete choice experiment," Journal of choice modelling, Elsevier, vol. 41(C).
    8. Poudel, Niranjan & Singleton, Patrick A., 2024. "Willingness to pay for changes in travel time and work time: A stated choice experiment of US commuters," Research in Transportation Economics, Elsevier, vol. 103(C).
    9. Hess, Stephane & Palma, David, 2019. "Apollo: A flexible, powerful and customisable freeware package for choice model estimation and application," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    10. van Cranenburgh, Sander & Chorus, Caspar G., 2018. "Does the decision rule matter for large-scale transport models?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 338-353.
    11. Hancock, Thomas O. & Hess, Stephane & Daly, Andrew & Fox, James, 2020. "Using a sequential latent class approach for model averaging: Benefits in forecasting and behavioural insights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 429-454.
    12. Szép, Teodóra & van Cranenburgh, Sander & Chorus, Caspar G., 2022. "Decision Field Theory: Equivalence with probit models and guidance for identifiability," Journal of choice modelling, Elsevier, vol. 45(C).
    13. Molloy, Joseph & Becker, Felix & Schmid, Basil & Axhausen, Kay W., 2021. "mixl: An open-source R package for estimating complex choice models on large datasets," Journal of choice modelling, Elsevier, vol. 39(C).
    14. Yuki Oyama & Daisuke Fukuda & Naoto Imura & Katsuhiro Nishinari, 2022. "E-commerce users' preferences for delivery options," Papers 2301.00666, arXiv.org, revised Aug 2023.
    15. John Buckell & Vrinda Vasavada & Sarah Wordsworth & Dean A. Regier & Matthew Quaife, 2022. "Utility maximization versus regret minimization in health choice behavior: Evidence from four datasets," Health Economics, John Wiley & Sons, Ltd., vol. 31(2), pages 363-381, February.
    16. Tatjana Ibraimovic & Stephane Hess, 2017. "Changes in the ethnic composition of neighbourhoods: Analysis of household's response and asymmetric preference structures," Papers in Regional Science, Wiley Blackwell, vol. 96(4), pages 759-784, November.
    17. Oyama, Yuki & Fukuda, Daisuke & Imura, Naoto & Nishinari, Katsuhiro, 2024. "Do people really want fast and precisely scheduled delivery? E-commerce customers' valuations of home delivery timing," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
    18. Balbontin, Camila & Hensher, David A. & Collins, Andrew T., 2019. "How to better represent preferences in choice models: The contributions to preference heterogeneity attributable to the presence of process heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 218-248.
    19. Jingmei Xiao & Mei Cai & Yu Gao, 2022. "A VIKOR-Based Linguistic Multi-Attribute Group Decision-Making Model in a Quantum Decision Scenario," Mathematics, MDPI, vol. 10(13), pages 1-23, June.
    20. Mahmud, Asif & Gayah, Vikash V. & Paleti, Rajesh, 2022. "A latent choice model to analyze the role of preliminary preferences in shaping observed choices," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 95-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:139:y:2020:i:c:p:165-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.