IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0068598.html
   My bibliography  Save this article

Searching for Synergies: Matrix Algebraic Approaches for Efficient Pair Screening

Author

Listed:
  • Philip Gerlee
  • Linnéa Schmidt
  • Naser Monsefi
  • Teresia Kling
  • Rebecka Jörnsten
  • Sven Nelander

Abstract

Functionally interacting perturbations, such as synergistic drugs pairs or synthetic lethal gene pairs, are of key interest in both pharmacology and functional genomics. However, to find such pairs by traditional screening methods is both time consuming and costly. We present a novel computational-experimental framework for efficient identification of synergistic target pairs, applicable for screening of systems with sizes on the order of current drug, small RNA or SGA (Synthetic Genetic Array) libraries (>1000 targets). This framework exploits the fact that the response of a drug pair in a given system, or a pair of genes' propensity to interact functionally, can be partly predicted by computational means from (i) a small set of experimentally determined target pairs, and (ii) pre-existing data (e.g. gene ontology, PPI) on the similarities between targets. Predictions are obtained by a novel matrix algebraic technique, based on cyclical projections onto convex sets. We demonstrate the efficiency of the proposed method using drug-drug interaction data from seven cancer cell lines and gene-gene interaction data from yeast SGA screens. Our protocol increases the rate of synergism discovery significantly over traditional screening, by up to 7-fold. Our method is easy to implement and could be applied to accelerate pair screening for both animal and microbial systems.

Suggested Citation

  • Philip Gerlee & Linnéa Schmidt & Naser Monsefi & Teresia Kling & Rebecka Jörnsten & Sven Nelander, 2013. "Searching for Synergies: Matrix Algebraic Approaches for Efficient Pair Screening," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
  • Handle: RePEc:plo:pone00:0068598
    DOI: 10.1371/journal.pone.0068598
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0068598
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0068598&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0068598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Remy Chait & Allison Craney & Roy Kishony, 2007. "Antibiotic interactions that select against resistance," Nature, Nature, vol. 446(7136), pages 668-671, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph Peter Torella & Remy Chait & Roy Kishony, 2010. "Optimal Drug Synergy in Antimicrobial Treatments," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-9, June.
    2. Marianne Bauer & Isabella R Graf & Vudtiwat Ngampruetikorn & Greg J Stephens & Erwin Frey, 2017. "Exploiting ecology in drug pulse sequences in favour of population reduction," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-17, September.
    3. Elsa Hansen & Jason Karslake & Robert J Woods & Andrew F Read & Kevin B Wood, 2020. "Antibiotics can be used to contain drug-resistant bacteria by maintaining sufficiently large sensitive populations," PLOS Biology, Public Library of Science, vol. 18(5), pages 1-20, May.
    4. Greenspoon, Philip B. & Mideo, Nicole, 2017. "Evolutionary rescue of a parasite population by mutation rate evolution," Theoretical Population Biology, Elsevier, vol. 117(C), pages 64-75.
    5. Chih-Wei Chen & Nadja Leimer & Egor A. Syroegin & Clémence Dunand & Zackery P. Bulman & Kim Lewis & Yury S. Polikanov & Maxim S. Svetlov, 2023. "Structural insights into the mechanism of overcoming Erm-mediated resistance by macrolides acting together with hygromycin-A," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Daniel Nichol & Peter Jeavons & Alexander G Fletcher & Robert A Bonomo & Philip K Maini & Jerome L Paul & Robert A Gatenby & Alexander RA Anderson & Jacob G Scott, 2015. "Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-19, September.
    7. Jeff Maltas & Kevin B Wood, 2019. "Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic resistance," PLOS Biology, Public Library of Science, vol. 17(10), pages 1-34, October.
    8. Eva Stadler & Mohamed Maiga & Lukas Friedrich & Vandana Thathy & Claudia Demarta-Gatsi & Antoine Dara & Fanta Sogore & Josefine Striepen & Claude Oeuvray & Abdoulaye A. Djimdé & Marcus C. S. Lee & Lau, 2023. "Propensity of selecting mutant parasites for the antimalarial drug cabamiquine," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Roger Guimerà & Marta Sales-Pardo, 2013. "A Network Inference Method for Large-Scale Unsupervised Identification of Novel Drug-Drug Interactions," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0068598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.