IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35380-5.html
   My bibliography  Save this article

Microbiome-mediated fructose depletion restricts murine gut colonization by vancomycin-resistant Enterococcus

Author

Listed:
  • Sandrine Isaac

    (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana - FISABIO
    Ecole Polytechnique Fédérale de Lausanne)

  • Alejandra Flor-Duro

    (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana - FISABIO)

  • Gloria Carruana

    (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana - FISABIO)

  • Leonor Puchades-Carrasco

    (Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe)

  • Anna Quirant

    (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana - FISABIO)

  • Marina Lopez-Nogueroles

    (Analytical Unit Platform, Instituto de Investigación Sanitaria La Fe)

  • Antonio Pineda-Lucena

    (Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe
    University of Navarra)

  • Marc Garcia-Garcera

    (University of Lausanne)

  • Carles Ubeda

    (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana - FISABIO
    CIBER en Epidemiología y Salud Pública)

Abstract

Multidrug-resistant organisms (MDRO) are a major threat to public health. MDRO infections, including those caused by vancomycin-resistant Enterococcus (VRE), frequently begin by colonization of the intestinal tract, a crucial step that is impaired by the intestinal microbiota. However, the specific members of the microbiota that suppress MDRO colonization and the mechanisms of such protection are largely unknown. Here, using metagenomics and mouse models that mimic the patients’ exposure to antibiotics, we identified commensal bacteria associated with protection against VRE colonization. We further found a consortium of five strains that was sufficient to restrict VRE gut colonization in antibiotic treated mice. Transcriptomics in combination with targeted metabolomics and in vivo assays indicated that the bacterial consortium inhibits VRE growth through nutrient depletion, specifically by reducing the levels of fructose, a carbohydrate that boosts VRE growth in vivo. Finally, in vivo RNA-seq analysis of each strain of the consortium in combination with ex vivo and in vivo assays demonstrated that a single bacterium (Olsenella sp.) could recapitulate the effect of the consortium. Our results indicate that nutrient depletion by specific commensals can reduce VRE intestinal colonization, which represents a novel non-antibiotic based strategy to prevent infections caused by this multidrug-resistant organism.

Suggested Citation

  • Sandrine Isaac & Alejandra Flor-Duro & Gloria Carruana & Leonor Puchades-Carrasco & Anna Quirant & Marina Lopez-Nogueroles & Antonio Pineda-Lucena & Marc Garcia-Garcera & Carles Ubeda, 2022. "Microbiome-mediated fructose depletion restricts murine gut colonization by vancomycin-resistant Enterococcus," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35380-5
    DOI: 10.1038/s41467-022-35380-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35380-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35380-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sohn G. Kim & Simone Becattini & Thomas U. Moody & Pavel V. Shliaha & Eric R. Littmann & Ruth Seok & Mergim Gjonbalaj & Vincent Eaton & Emily Fontana & Luigi Amoretti & Roberta Wright & Silvia Caballe, 2019. "Microbiota-derived lantibiotic restores resistance against vancomycin-resistant Enterococcus," Nature, Nature, vol. 572(7771), pages 665-669, August.
    2. Sushma Kommineni & Daniel J. Bretl & Vy Lam & Rajrupa Chakraborty & Michael Hayward & Pippa Simpson & Yumei Cao & Pavlos Bousounis & Christopher J. Kristich & Nita H. Salzman, 2015. "Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract," Nature, Nature, vol. 526(7575), pages 719-722, October.
    3. Ana Djukovic & María José Garzón & Cécile Canlet & Vitor Cabral & Rym Lalaoui & Marc García-Garcerá & Julia Rechenberger & Marie Tremblay-Franco & Iván Peñaranda & Leonor Puchades-Carrasco & Antonio P, 2022. "Lactobacillus supports Clostridiales to restrict gut colonization by multidrug-resistant Enterobacteriaceae," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Katharina Brandl & George Plitas & Coralia N. Mihu & Carles Ubeda & Ting Jia & Martin Fleisher & Bernd Schnabl & Ronald P. DeMatteo & Eric G. Pamer, 2008. "Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits," Nature, Nature, vol. 455(7214), pages 804-807, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomás Clive Barker-Tejeda & Elisa Zubeldia-Varela & Andrea Macías-Camero & Lola Alonso & Isabel Adoración Martín-Antoniano & María Fernanda Rey-Stolle & Leticia Mera-Berriatua & Raphaëlle Bazire & Pau, 2024. "Comparative characterization of the infant gut microbiome and their maternal lineage by a multi-omics approach," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsa Hansen & Jason Karslake & Robert J Woods & Andrew F Read & Kevin B Wood, 2020. "Antibiotics can be used to contain drug-resistant bacteria by maintaining sufficiently large sensitive populations," PLOS Biology, Public Library of Science, vol. 18(5), pages 1-20, May.
    2. Daniel P. G. H. Wong & Benjamin H. Good, 2024. "Quantifying the adaptive landscape of commensal gut bacteria using high-resolution lineage tracking," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Lu Wu & Xu-Wen Wang & Zining Tao & Tong Wang & Wenlong Zuo & Yu Zeng & Yang-Yu Liu & Lei Dai, 2024. "Data-driven prediction of colonization outcomes for complex microbial communities," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Julia L. Gross & Rahul Basu & Clinton J. Bradfield & Jing Sun & Sinu P. John & Sanchita Das & John P. Dekker & David S. Weiss & Iain D. C. Fraser, 2024. "Bactericidal antibiotic treatment induces damaging inflammation via TLR9 sensing of bacterial DNA," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Alexander Y. G. Yip & Olivia G. King & Oleksii Omelchenko & Sanjana Kurkimat & Victoria Horrocks & Phoebe Mostyn & Nathan Danckert & Rohma Ghani & Giovanni Satta & Elita Jauneikaite & Frances J. Davie, 2023. "Antibiotics promote intestinal growth of carbapenem-resistant Enterobacteriaceae by enriching nutrients and depleting microbial metabolites," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Tomás Clive Barker-Tejeda & Elisa Zubeldia-Varela & Andrea Macías-Camero & Lola Alonso & Isabel Adoración Martín-Antoniano & María Fernanda Rey-Stolle & Leticia Mera-Berriatua & Raphaëlle Bazire & Pau, 2024. "Comparative characterization of the infant gut microbiome and their maternal lineage by a multi-omics approach," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    7. Qian Li & Shang Chen & Kui Zhu & Xiaoluo Huang & Yucheng Huang & Zhangqi Shen & Shuangyang Ding & Danxia Gu & Qiwen Yang & Hongli Sun & Fupin Hu & Hui Wang & Jiachang Cai & Bing Ma & Rong Zhang & Jian, 2022. "Collateral sensitivity to pleuromutilins in vancomycin-resistant Enterococcus faecium," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35380-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.