IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/1002319.html
   My bibliography  Save this article

Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells

Author

Listed:
  • Asaph Zylbertal
  • Anat Kahan
  • Yoram Ben-Shaul
  • Yosef Yarom
  • Shlomo Wagner

Abstract

Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here, we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. We show that mitral cells in the accessory olfactory bulb (AOB), which plays a major role in mammalian social behavior, may respond to a brief sensory stimulation with persistent firing. By combining electrical recordings, Ca2+ and Na+ imaging, and realistic computational modeling, we explored the mechanisms underlying the persistent activity in AOB mitral cells. We found that the exceptionally slow inward current that underlies this activity is governed by prolonged dynamics of intracellular Na+ ([Na+]i), which affects neuronal electrical activity via several pathways. Specifically, elevated dendritic [Na+]i reverses the Na+-Ca2+ exchanger activity, thus modifying the [Ca2+]i set-point. This process, which relies on ubiquitous membrane mechanisms, is likely to play a role in other neuronal types in various brain regions.An experimental and computational study reveals a novel mechanism for persistent activity of neurons in response to transient stimulation. Instead of involving feedback mechanisms, it relies on slow changes in intracellular sodium ion concentration, leading to prolonged calcium-dependent inward current.Author Summary: The accessory olfactory system is essential for chemical communication in animals during social interactions. During this process, the principle cells of the accessory olfactory bulb (AOB) may respond to transient stimulation with prolonged activity, sometimes lasting for minutes—a property known as persistent activity. This property, which has been observed in other brain areas, is usually attributed to positive feedback mechanisms either at the cellular or the network level. Here, we show how persistent activity can emerge without feedback, relying on slow changes in internal ionic concentrations, which keep a record of past neuronal activity for long periods of time. We used a combined computational and experimental approach to show that the complex interaction between various ions, their extrusion mechanisms, and the membrane potential leads to stimulus-dependent persistent activity in the AOB. The same mechanism may apply to other neuronal types in various brain regions.

Suggested Citation

  • Asaph Zylbertal & Anat Kahan & Yoram Ben-Shaul & Yosef Yarom & Shlomo Wagner, 2015. "Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells," PLOS Biology, Public Library of Science, vol. 13(12), pages 1-25, December.
  • Handle: RePEc:plo:pbio00:1002319
    DOI: 10.1371/journal.pbio.1002319
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002319
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.1002319&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.1002319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rosa Cossart & Dmitriy Aronov & Rafael Yuste, 2003. "Attractor dynamics of network UP states in the neocortex," Nature, Nature, vol. 423(6937), pages 283-288, May.
    2. Ranulfo Romo & Carlos D. Brody & Adrián Hernández & Luis Lemus, 1999. "Neuronal correlates of parametric working memory in the prefrontal cortex," Nature, Nature, vol. 399(6735), pages 470-473, June.
    3. Tali Kimchi & Jennings Xu & Catherine Dulac, 2007. "A functional circuit underlying male sexual behaviour in the female mouse brain," Nature, Nature, vol. 448(7157), pages 1009-1014, August.
    4. Alexei V. Egorov & Bassam N. Hamam & Erik Fransén & Michael E. Hasselmo & Angel A. Alonso, 2002. "Graded persistent activity in entorhinal cortex neurons," Nature, Nature, vol. 420(6912), pages 173-178, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emili Balaguer-Ballester & Christopher C Lapish & Jeremy K Seamans & Daniel Durstewitz, 2011. "Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-19, May.
    2. Fabiano Baroni & Joaquín J Torres & Pablo Varona, 2010. "History-Dependent Excitability as a Single-Cell Substrate of Transient Memory for Information Discrimination," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-19, December.
    3. Milena Raffi & Ralph M Siegel, 2007. "A Functional Architecture of Optic Flow in the Inferior Parietal Lobule of the Behaving Monkey," PLOS ONE, Public Library of Science, vol. 2(2), pages 1-19, February.
    4. Qiming Shao & Ligu Chen & Xiaowan Li & Miao Li & Hui Cui & Xiaoyue Li & Xinran Zhao & Yuying Shi & Qiang Sun & Kaiyue Yan & Guangfu Wang, 2024. "A non-canonical visual cortical-entorhinal pathway contributes to spatial navigation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Sacha Jennifer van Albada & Moritz Helias & Markus Diesmann, 2015. "Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-37, September.
    6. Martinez-Saito, Mario, 2022. "Discrete scaling and criticality in a chain of adaptive excitable integrators," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    7. Roberto F Galán, 2008. "On How Network Architecture Determines the Dominant Patterns of Spontaneous Neural Activity," PLOS ONE, Public Library of Science, vol. 3(5), pages 1-10, May.
    8. Kyriaki Sidiropoulou & Panayiota Poirazi, 2012. "Predictive Features of Persistent Activity Emergence in Regular Spiking and Intrinsic Bursting Model Neurons," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-15, April.
    9. Sen Song & Per Jesper Sjöström & Markus Reigl & Sacha Nelson & Dmitri B Chklovskii, 2005. "Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits," PLOS Biology, Public Library of Science, vol. 3(3), pages 1-1, March.
    10. Suchin S Gururangan & Alexander J Sadovsky & Jason N MacLean, 2014. "Analysis of Graph Invariants in Functional Neocortical Circuitry Reveals Generalized Features Common to Three Areas of Sensory Cortex," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    11. Krishna Choudhary & Sven Berberich & Thomas T. G. Hahn & James M. McFarland & Mayank R. Mehta, 2024. "Spontaneous persistent activity and inactivity in vivo reveals differential cortico-entorhinal functional connectivity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Gabriel D Puccini & Maria V Sanchez-Vives & Albert Compte, 2007. "Integrated Mechanisms of Anticipation and Rate-of-Change Computations in Cortical Circuits," PLOS Computational Biology, Public Library of Science, vol. 3(5), pages 1-13, May.
    13. Kaushik J. Lakshminarasimhan & Eric Avila & Xaq Pitkow & Dora E. Angelaki, 2023. "Dynamical latent state computation in the male macaque posterior parietal cortex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    14. Chong Guo & Vincent Huson & Evan Z. Macosko & Wade G. Regehr, 2021. "Graded heterogeneity of metabotropic signaling underlies a continuum of cell-intrinsic temporal responses in unipolar brush cells," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    15. Sreedhar S Kumar & Jan Wülfing & Samora Okujeni & Joschka Boedecker & Martin Riedmiller & Ulrich Egert, 2016. "Autonomous Optimization of Targeted Stimulation of Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-22, August.
    16. Han Xu & Dashan Shang & Qing Luo & Junjie An & Yue Li & Shuyu Wu & Zhihong Yao & Woyu Zhang & Xiaoxin Xu & Chunmeng Dou & Hao Jiang & Liyang Pan & Xumeng Zhang & Ming Wang & Zhongrui Wang & Jianshi Ta, 2023. "A low-power vertical dual-gate neurotransistor with short-term memory for high energy-efficient neuromorphic computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Minhao Li & Dawn S. Chen & Ian P. Junker & Fabianna I. Szorenyi & Guan Hao Chen & Arnold J. Berger & Aaron A. Comeault & Daniel R. Matute & Yun Ding, 2024. "Ancestral neural circuits potentiate the origin of a female sexual behavior in Drosophila," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Adam Ponzi & Jeffery R Wickens, 2013. "Optimal Balance of the Striatal Medium Spiny Neuron Network," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-21, April.
    19. David Holcman & Misha Tsodyks, 2006. "The Emergence of Up and Down States in Cortical Networks," PLOS Computational Biology, Public Library of Science, vol. 2(3), pages 1-8, March.
    20. Andreas Steimer & Kaspar Schindler, 2015. "Random Sampling with Interspike-Intervals of the Exponential Integrate and Fire Neuron: A Computational Interpretation of UP-States," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-26, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:1002319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.