IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30814-6.html
   My bibliography  Save this article

Microfluidics for understanding model organisms

Author

Listed:
  • Nolan Frey

    (Carnegie Mellon University)

  • Utku M. Sönmez

    (Carnegie Mellon University)

  • Jonathan Minden

    (Carnegie Mellon University
    Carnegie Mellon University)

  • Philip LeDuc

    (Carnegie Mellon University
    Carnegie Mellon University
    Carnegie Mellon University
    Carnegie Mellon University)

Abstract

New microfluidic systems for whole organism analysis and experimentation are catalyzing biological breakthroughs across many fields, from human health to fundamental biology principles. This perspective discusses recent microfluidic tools to study intact model organisms to demonstrate the tremendous potential for these integrated approaches now and into the future. We describe these microsystems' technical features and highlight the unique advantages for precise manipulation in areas including immobilization, automated alignment, sorting, sensory, mechanical and chemical stimulation, and genetic and thermal perturbation. Our aim is to familiarize technologically focused researchers with microfluidics applications in biology research, while providing biologists an entrée to advanced microengineering techniques for model organisms.

Suggested Citation

  • Nolan Frey & Utku M. Sönmez & Jonathan Minden & Philip LeDuc, 2022. "Microfluidics for understanding model organisms," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30814-6
    DOI: 10.1038/s41467-022-30814-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30814-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30814-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John C. Montgomery & Cindy F. Baker & Alexander G. Carton, 1997. "The lateral line can mediate rheotaxis in fish," Nature, Nature, vol. 389(6654), pages 960-963, October.
    2. Li He & Guangwei Si & Jiuhong Huang & Aravinthan D. T. Samuel & Norbert Perrimon, 2018. "Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel," Nature, Nature, vol. 555(7694), pages 103-106, March.
    3. Elena M. Lucchetta & Ji Hwan Lee & Lydia A. Fu & Nipam H. Patel & Rustem F. Ismagilov, 2005. "Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics," Nature, Nature, vol. 434(7037), pages 1134-1138, April.
    4. Adriana San-Miguel & Peri T. Kurshan & Matthew M. Crane & Yuehui Zhao & Patrick T. McGrath & Kang Shen & Hang Lu, 2016. "Deep phenotyping unveils hidden traits and genetic relations in subtle mutants," Nature Communications, Nature, vol. 7(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arenas, Antonio & Politano, Marcela & Weber, Larry & Timko, Mark, 2015. "Analysis of movements and behavior of smolts swimming in hydropower reservoirs," Ecological Modelling, Elsevier, vol. 312(C), pages 292-307.
    2. Chong Li & Xinxin Liao & Zhi-Ke Peng & Guang Meng & Qingbo He, 2023. "Highly sensitive and broadband meta-mechanoreceptor via mechanical frequency-division multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Junjun Gao & Song Zhang & Pan Deng & Zhigang Wu & Bruno Lemaitre & Zongzhao Zhai & Zheng Guo, 2024. "Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Jiae Lee & Alejandra J. H. Cabrera & Cecilia M. T. Nguyen & Young V. Kwon, 2020. "Dissemination of RasV12-transformed cells requires the mechanosensitive channel Piezo," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    5. Jingyuan Deng & Wei Wang & Long Jason Lu & Jun Ma, 2010. "A Two-Dimensional Simulation Model of the Bicoid Gradient in Drosophila," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-11, April.
    6. Kathyani Parasram & Amy Zuccato & Minjeong Shin & Reegan Willms & Brian DeVeale & Edan Foley & Phillip Karpowicz, 2024. "The emergence of circadian timekeeping in the intestine," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Andrew D Brown & Joseph A Sisneros & Tyler Jurasin & Chau Nguyen & Allison B Coffin, 2013. "Differences in Lateral Line Morphology between Hatchery- and Wild-Origin Steelhead," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-9, March.
    8. David M Holloway & Francisco J P Lopes & Luciano da Fontoura Costa & Bruno A N Travençolo & Nina Golyandina & Konstantin Usevich & Alexander V Spirov, 2011. "Gene Expression Noise in Spatial Patterning: hunchback Promoter Structure Affects Noise Amplitude and Distribution in Drosophila Segmentation," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-18, February.
    9. Ahmad Mayeli & Obada Al Zoubi & Evan J. White & Sheridan Chappelle & Rayus Kuplicki & Alexa Morton & Jaimee Bruce & Ryan Smith & Justin S. Feinstein & Jerzy Bodurka & Martin P. Paulus & Sahib S. Khals, 2023. "Parieto-occipital ERP indicators of gut mechanosensation in humans," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Samuel K. H. Sy & Danny C. W. Chan & Roy C. H. Chan & Jing Lyu & Zhongqi Li & Kenneth K. Y. Wong & Chung Hang Jonathan Choi & Vincent C. T. Mok & Hei-Ming Lai & Owen Randlett & Yu Hu & Ho Ko, 2023. "An optofluidic platform for interrogating chemosensory behavior and brainwide neural representation in larval zebrafish," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30814-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.