IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v8y2021i1d10.1057_s41599-021-00931-6.html
   My bibliography  Save this article

A physiological model of human mobility: A global study

Author

Listed:
  • Robert Kölbl

    (Technische Universität Wien)

  • Martin Kozek

    (Technische Universität Wien)

Abstract

The movement of people has led to several challenges in terms of traffic congestion, energy consumption, emissions and climate change. Human mobility modelling is currently described mainly through socio-economic variables, such as travel time, travel costs, income and car-ownership. The overall objective of this paper is to relate mobility behaviour based on measurable entities of travel time and distance and the entities of speed. A simple underlying mechanism of human mobility is presented based on the human energy expended. The energy is related firstly to the average values of travel modes. Explicit formulas for the distribution within each travel mode are developed and the concept is also shown to apply to multi-modal mobility. The approach is described in its most basic and fundamental form, but opens up perspectives for new applications and analyses approaches to transport modelling, planning and appraisals. The approach shows that travel time and distance are consistently inversely proportional and limited by the physiological power consumption. The basic hypothesis and the related verifications is shown on all modal combinations of daily mobility with a median R2 of around 0.8. The approach is validated using national travel surveys of Germany, Switzerland, UK and US, spanning over five decades to 2018.

Suggested Citation

  • Robert Kölbl & Martin Kozek, 2021. "A physiological model of human mobility: A global study," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-14, December.
  • Handle: RePEc:pal:palcom:v:8:y:2021:i:1:d:10.1057_s41599-021-00931-6
    DOI: 10.1057/s41599-021-00931-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-021-00931-6
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-021-00931-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rafael Prieto Curiel & Luca Pappalardo & Lorenzo Gabrielli & Steven Richard Bishop, 2018. "Gravity and scaling laws of city to city migration," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-19, July.
    2. Brathwaite, Timothy & Walker, Joan L., 2018. "Causal inference in travel demand modeling (and the lack thereof)," Journal of choice modelling, Elsevier, vol. 26(C), pages 1-18.
    3. Hani S. Mahmassani & Gang-Len Chang, 1987. "On Boundedly Rational User Equilibrium in Transportation Systems," Transportation Science, INFORMS, vol. 21(2), pages 89-99, May.
    4. Mokhtarian, Patricia L. & Chen, Cynthia, 2004. "TTB or not TTB, that is the question: a review and analysis of the empirical literature on travel time (and money) budgets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(9-10), pages 643-675.
    5. Anas, Alex, 1983. "Discrete choice theory, information theory and the multinomial logit and gravity models," Transportation Research Part B: Methodological, Elsevier, vol. 17(1), pages 13-23, February.
    6. Li, Baibing, 2019. "Measuring travel time reliability and risk: A nonparametric approach," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 152-171.
    7. Chen, Yanguang, 2015. "The distance-decay function of geographical gravity model: Power law or exponential law?," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 174-189.
    8. Quan-Hoang Vuong, 2018. "The (ir)rational consideration of the cost of science in transition economies," Nature Human Behaviour, Nature, vol. 2(1), pages 5-5, January.
    9. Riccardo Gallotti & Armando Bazzani & Sandro Rambaldi & Marc Barthelemy, 2016. "A stochastic model of randomly accelerated walkers for human mobility," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    10. Filippo Simini & Marta C. González & Amos Maritan & Albert-László Barabási, 2012. "A universal model for mobility and migration patterns," Nature, Nature, vol. 484(7392), pages 96-100, April.
    11. Small, Kenneth A., 2012. "Valuation of travel time," Economics of Transportation, Elsevier, vol. 1(1), pages 2-14.
    12. Michael Wegener & Franz Fuerst, 2004. "Land-Use Transport Interaction: State of the Art," Urban/Regional 0409005, University Library of Munich, Germany.
    13. Schafer, Andreas, 1998. "The global demand for motorized mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(6), pages 455-477, August.
    14. McFadden, Daniel, 1974. "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
    15. David A. Hensher, 2011. "Valuation of Travel Time Savings," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 7, Edward Elgar Publishing.
    16. Vickerman, Roger, 2017. "Beyond cost-benefit analysis: the search for a comprehensive evaluation of transport investment," Research in Transportation Economics, Elsevier, vol. 63(C), pages 5-12.
    17. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    18. Asif Ahmed & Peter Stopher, 2014. "Seventy Minutes Plus or Minus 10 - A Review of Travel Time Budget Studies," Transport Reviews, Taylor & Francis Journals, vol. 34(5), pages 607-625, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Weiying & Osaragi, Toshihiro, 2024. "Lognormal distribution of daily travel time and a utility model for its emergence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    2. Hu, Beibei & Sun, Yue & Li, Zixun & Zhang, Yanli & Sun, Huijun & Dong, Xianlei, 2024. "Competitive advantage of car-sharing based on travel costs comparison model: A case study of Beijing, China," Research in Transportation Economics, Elsevier, vol. 103(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Longden, Thomas, 2016. "The Regularity and Irregularity of Travel: an Analysis of the Consistency of Travel Times Associated with Subsistence, Maintenance and Discretionary Activities," ET: Economic Theory 243150, Fondazione Eni Enrico Mattei (FEEM).
    2. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    3. Chen, Ya & Li, Xue & Zhang, Richong & Huang, Zi-Gang & Lai, Ying-Cheng, 2020. "Instantaneous success and influence promotion in cyberspace — how do they occur?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    4. Huang, Zhiren & Wang, Pu & Zhang, Fan & Gao, Jianxi & Schich, Maximilian, 2018. "A mobility network approach to identify and anticipate large crowd gatherings," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 147-170.
    5. Thomas Longden, 2016. "The Regularity and Irregularity of Travel: an Analysis of the Consistency of Travel Times Associated with Subsistence, Maintenance and Discretionary Activities," Working Papers 2016.49, Fondazione Eni Enrico Mattei.
    6. Hong, Inho & Jung, Woo-Sung, 2016. "Application of gravity model on the Korean urban bus network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 48-55.
    7. Vincent Viguié, 2015. "Cross-commuting and housing prices in a polycentric modeling of cities," Policy Papers 2015.03, FAERE - French Association of Environmental and Resource Economists.
    8. Alireza Ermagun & David M Levinson, 2019. "Development and application of the network weight matrix to predict traffic flow for congested and uncongested conditions," Environment and Planning B, , vol. 46(9), pages 1684-1705, November.
    9. Chen, Xiqun (Michael) & Chen, Chuqiao & Ni, Linglin & Li, Li, 2018. "Spatial visitation prediction of on-demand ride services using the scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 84-94.
    10. Varga, Levente & Tóth, Géza & Néda, Zoltán, 2017. "An improved radiation model and its applicability for understanding commuting patterns in Hungary," MPRA Paper 76806, University Library of Munich, Germany.
    11. Anas, Alex & Chang, Huibin, 2023. "Productivity benefits of urban transportation megaprojects: A general equilibrium analysis of «Grand Paris Express»," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    12. Borck, Rainald & Mulder, Peter, 2024. "Energy policies and pollution in two developing country cities: A quantitative model," Journal of Development Economics, Elsevier, vol. 171(C).
    13. Wang, Wenjun & Pan, Lin & Yuan, Ning & Zhang, Sen & Liu, Dong, 2015. "A comparative analysis of intra-city human mobility by taxi," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 134-147.
    14. Arif Wismadi & Mark Zuidgeest & Mark Brussel & Martin Maarseveen, 2014. "Spatial Preference Modelling for equitable infrastructure provision: an application of Sen’s Capability Approach," Journal of Geographical Systems, Springer, vol. 16(1), pages 19-48, January.
    15. Lecca, Patrizio & Persyn, Damiaan & Sakkas, Stelios, 2023. "Capital-skill complementarity and regional inequality: A spatial general equilibrium analysis," Regional Science and Urban Economics, Elsevier, vol. 102(C).
    16. Robson, Edward N. & Wijayaratna, Kasun P. & Dixit, Vinayak V., 2018. "A review of computable general equilibrium models for transport and their applications in appraisal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 31-53.
    17. Gössling, Stefan & Kees, Jessica & Litman, Todd & Humpe, Andreas, 2023. "The economic cost of a 130 kph speed limit in Germany," Ecological Economics, Elsevier, vol. 209(C).
    18. Paul Peeters & Martin Landré, 2011. "The Emerging Global Tourism Geography—An Environmental Sustainability Perspective," Sustainability, MDPI, vol. 4(1), pages 1-30, December.
    19. de Grange, Louis & González, Felipe & Marechal, Matthieu & Troncoso, Rodrigo, 2024. "Estimating multinomial logit models with endogenous variables: Control function versus two adapted approaches," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    20. Liu, Chengxi & Susilo, Yusak O. & Dharmowijoyo, Dimas B.E., 2018. "Investigating intra-household interactions between individuals' time and space constraints," Journal of Transport Geography, Elsevier, vol. 73(C), pages 108-119.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:8:y:2021:i:1:d:10.1057_s41599-021-00931-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.