IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v114y2018icp147-170.html
   My bibliography  Save this article

A mobility network approach to identify and anticipate large crowd gatherings

Author

Listed:
  • Huang, Zhiren
  • Wang, Pu
  • Zhang, Fan
  • Gao, Jianxi
  • Schich, Maximilian

Abstract

The study of large crowd gatherings combines aspects of longer-range human mobility with site-specific pedestrian dynamics. Recently, substantial progress has been made in understanding the collective behaviors of crowds on the site-specific scale. Yet, the human mobility aspect remains vague in terms of how large crowds come together in the first place. Using high-resolution human mobility data in form of millions, potentially real-time, subway and taxi records, our approach uncovers the mobility patterns involved in large crowd gatherings. In addition, we discriminate anomalous mobility fluxes from ordinary mobility fluxes by introducing the concept of anomalous mobility networks, within which nodes are traffic zones and links are defined via the Jensen-Shannon divergence. Our approach allows for easy identification of occurrence, location and developing stages of crowd formation. Strikingly, within the anomalous mobility networks, we find high-stress crowd density to be preceded by a node in-degree kin surpassing the critical threshold kc, typically preceding the maximum crowd density by a couple of hours, enabling us to anticipate large crowd gatherings via a surprisingly simple approach based on the simple network index kin.

Suggested Citation

  • Huang, Zhiren & Wang, Pu & Zhang, Fan & Gao, Jianxi & Schich, Maximilian, 2018. "A mobility network approach to identify and anticipate large crowd gatherings," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 147-170.
  • Handle: RePEc:eee:transb:v:114:y:2018:i:c:p:147-170
    DOI: 10.1016/j.trb.2018.05.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517310986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.05.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    2. Xiao-Yong Yan & Wen-Xu Wang & Zi-You Gao & Ying-Cheng Lai, 2017. "Universal model of individual and population mobility on diverse spatial scales," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    3. Shiwakoti, Nirajan & Sarvi, Majid & Rose, Geoff & Burd, Martin, 2011. "Animal dynamics based approach for modeling pedestrian crowd egress under panic conditions," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1433-1449.
    4. Michael Batty & Jake Desyllas & Elspeth Duxbury, 2003. "Safety in Numbers? Modelling Crowds and Designing Control for the Notting Hill Carnival," Urban Studies, Urban Studies Journal Limited, vol. 40(8), pages 1573-1590, July.
    5. Thomas Louail & Maxime Lenormand & Miguel Picornell & Oliva García Cantú & Ricardo Herranz & Enrique Frias-Martinez & José J. Ramasco & Marc Barthelemy, 2015. "Uncovering the spatial structure of mobility networks," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    6. Riccardo Gallotti & Armando Bazzani & Sandro Rambaldi & Marc Barthelemy, 2016. "A stochastic model of randomly accelerated walkers for human mobility," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    7. Filippo Simini & Marta C. González & Amos Maritan & Albert-László Barabási, 2012. "A universal model for mobility and migration patterns," Nature, Nature, vol. 484(7392), pages 96-100, April.
    8. Sun, Lijun & Axhausen, Kay W., 2016. "Understanding urban mobility patterns with a probabilistic tensor factorization framework," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 511-524.
    9. Haghani, Milad & Sarvi, Majid, 2018. "Crowd behaviour and motion: Empirical methods," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 253-294.
    10. Dirk Helbing & Pratik Mukerji, "undated". "Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster," Working Papers ETH-RC-12-010, ETH Zurich, Chair of Systems Design.
    11. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    12. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    13. Yihui Ren & Mária Ercsey-Ravasz & Pu Wang & Marta C. González & Zoltán Toroczkai, 2014. "Predicting commuter flows in spatial networks using a radiation model based on temporal ranges," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    14. Haghani, Milad & Sarvi, Majid, 2017. "Stated and revealed exit choices of pedestrian crowd evacuees," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 238-259.
    15. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Li & Zhao, Juanjuan & Zhang, Jun & Zhang, Fan & Ye, Kejiang & Xu, Chengzhong, 2024. "Activity-based individual travel regularity exploring with entropy-space K-means clustering using smart card data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    2. Yang, Yitao & Jia, Bin & Yan, Xiao-Yong & Zhi, Danyue & Song, Dongdong & Chen, Yan & de Bok, Michiel & Tavasszy, Lóránt A. & Gao, Ziyou, 2023. "Uncovering and modeling the hierarchical organization of urban heavy truck flows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    3. Ximan Ling & Zhiren Huang & Chengcheng Wang & Fan Zhang & Pu Wang, 2018. "Predicting subway passenger flows under different traffic conditions," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    4. Ling, Ximan & Peng, Yang & Sun, Shilin & Li, Panpan & Wang, Pu, 2018. "Uncovering correlation between train delay and train exposure to bad weather," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1152-1159.
    5. Zhu, Kangli & Yin, Haodong & Qu, YunChao & Wu, Jianjun, 2021. "Group travel behavior in metro system and its relationship with house price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    6. Guo, Bao & Li, Minglun & Zhou, Mengnan & Zhang, Fan & Wang, Pu, 2023. "A new anomalous travel demand prediction method combining Markov model and complex network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ya & Li, Xue & Zhang, Richong & Huang, Zi-Gang & Lai, Ying-Cheng, 2020. "Instantaneous success and influence promotion in cyberspace — how do they occur?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    2. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    3. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
    4. Jiang, Jincheng & Xu, Zhihua & Zhang, Zhenxin & Zhang, Jie & Liu, Kang & Kong, Hui, 2023. "Revealing the fractal and self-similarity of realistic collective human mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    5. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    6. Yang, Yitao & Jia, Bin & Yan, Xiao-Yong & Zhi, Danyue & Song, Dongdong & Chen, Yan & de Bok, Michiel & Tavasszy, Lóránt A. & Gao, Ziyou, 2023. "Uncovering and modeling the hierarchical organization of urban heavy truck flows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    7. Liu, Qiujia & Lu, Linjun & Zhang, Yijing & Hu, Miaoqing, 2022. "Modeling the dynamics of pedestrian evacuation in a complex environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    8. Li, Wenhang & Gong, Jianhua & Yu, Ping & Shen, Shen & Li, Rong & Duan, Qishen, 2014. "Simulation and analysis of individual trampling risk during escalator transfers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 119-133.
    9. Shi, Xiaomeng & Ye, Zhirui & Shiwakoti, Nirajan & Tang, Dounan & Lin, Junkai, 2019. "Examining effect of architectural adjustment on pedestrian crowd flow at bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 350-364.
    10. Shabna SayedMohammed & Anshi Verma & Charitha Dias & Wael Alhajyaseen & Abdulkarim Almukdad & Kayvan Aghabayk, 2022. "Crowd Evacuation through Crossing Configurations: Effect of Crossing Angles and Walking Speeds on Speed Variation and Evacuation Time," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    11. He, Zhengbing, 2020. "Spatial-temporal fractal of urban agglomeration travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    12. Jungmin Kim & Juyong Park & Wonjae Lee, 2018. "Why do people move? Enhancing human mobility prediction using local functions based on public records and SNS data," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-29, February.
    13. Shahhoseini, Zahra & Sarvi, Majid, 2019. "Pedestrian crowd flows in shared spaces: Investigating the impact of geometry based on micro and macro scale measures," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 57-87.
    14. Chen, Xiqun (Michael) & Chen, Chuqiao & Ni, Linglin & Li, Li, 2018. "Spatial visitation prediction of on-demand ride services using the scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 84-94.
    15. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    16. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    17. Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
    18. Li, Wenhang & Gong, Jianhua & Yu, Ping & Shen, Shen, 2016. "Modeling, simulation and analysis of group trampling risks during escalator transfers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 970-984.
    19. Daniel Austin & Robin M Cross & Tamara Hayes & Jeffrey Kaye, 2014. "Regularity and Predictability of Human Mobility in Personal Space," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-8, February.
    20. Fernando Santa & Roberto Henriques & Joaquín Torres-Sospedra & Edzer Pebesma, 2019. "A Statistical Approach for Studying the Spatio-Temporal Distribution of Geolocated Tweets in Urban Environments," Sustainability, MDPI, vol. 11(3), pages 1-29, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:114:y:2018:i:c:p:147-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.