IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v5y2019i1d10.1057_s41599-019-0359-x.html
   My bibliography  Save this article

Bots fired: examining social bot evidence in online mass shooting conversations

Author

Listed:
  • Ross Schuchard

    (George Mason University)

  • Andrew Crooks

    (George Mason University
    George Mason University)

  • Anthony Stefanidis

    (George Mason University)

  • Arie Croitoru

    (George Mason University)

Abstract

Mass shootings, like other extreme events, have long garnered public curiosity and, in turn, significant media coverage. The media framing, or topic focus, of mass shooting events typically evolves over time from details of the actual shooting to discussions of potential policy changes (e.g., gun control, mental health). Such media coverage has been historically provided through traditional media sources such as print, television, and radio, but the advent of online social networks (OSNs) has introduced a new platform for accessing, producing, and distributing information about such extreme events. The ease and convenience of OSN usage for information within society’s larger growing reliance upon digital technologies introduces potential unforeseen risks. Social bots, or automated software agents, are one such risk, as they can serve to amplify or distort potential narratives associated with extreme events such as mass shootings. In this paper, we seek to determine the prevalence and relative importance of social bots participating in OSN conversations following mass shooting events using an ensemble of quantitative techniques. Specifically, we examine a corpus of more than 46 million tweets produced by 11.7 million unique Twitter accounts within OSN conversations discussing four major mass shooting events: the 2017 Las Vegas concert shooting, the 2017 Sutherland Springs church chooting, the 2018 Parkland School Shooting and the 2018 Santa Fe school shooting. This study’s results show that social bots participate in and contribute to online mass shooting conversations in a manner that is distinguishable from human contributions. Furthermore, while social bots accounted for fewer than 1% of total corpus user contributors, social network analysis centrality measures identified many bots with significant prominence in the conversation networks, densely occupying many of the highest eigenvector and out-degree centrality measure rankings, to include 82% of the top-100 eigenvector values of the Las Vegas retweet network.

Suggested Citation

  • Ross Schuchard & Andrew Crooks & Anthony Stefanidis & Arie Croitoru, 2019. "Bots fired: examining social bot evidence in online mass shooting conversations," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-12, December.
  • Handle: RePEc:pal:palcom:v:5:y:2019:i:1:d:10.1057_s41599-019-0359-x
    DOI: 10.1057/s41599-019-0359-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-019-0359-x
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-019-0359-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:nas:journl:v:115:y:2018:p:12435-12440 is not listed on IDEAS
    2. Chengcheng Shao & Giovanni Luca Ciampaglia & Onur Varol & Kai-Cheng Yang & Alessandro Flammini & Filippo Menczer, 2018. "The spread of low-credibility content by social bots," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    3. Bjarke Mønsted & Piotr Sapieżyński & Emilio Ferrara & Sune Lehmann, 2017. "Evidence of complex contagion of information in social media: An experiment using Twitter bots," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suzanne Elayan & Martin Sykora, 2024. "Digital intermediaries in pandemic times: social media and the role of bots in communicating emotions and stress about Coronavirus," Journal of Computational Social Science, Springer, vol. 7(3), pages 2481-2504, December.
    2. Joshua Uyheng & Kathleen M. Carley, 2020. "Bots and online hate during the COVID-19 pandemic: case studies in the United States and the Philippines," Journal of Computational Social Science, Springer, vol. 3(2), pages 445-468, November.
    3. Yevgeniy Golovchenko, 2020. "Measuring the scope of pro-Kremlin disinformation on Twitter," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-11, December.
    4. Lori Beaman & Ariel BenYishay & Jeremy Magruder & Ahmed Mushfiq Mobarak, 2021. "Can Network Theory-Based Targeting Increase Technology Adoption?," American Economic Review, American Economic Association, vol. 111(6), pages 1918-1943, June.
    5. Daniel Reisinger & Fabian Tschofenig & Raven Adam & Marie Lisa Kogler & Manfred Füllsack & Fabian Veider & Georg Jäger, 2024. "Patterns of stability in complex contagions," Journal of Computational Social Science, Springer, vol. 7(2), pages 1895-1911, October.
    6. John Higgins & Tarun Sabarwal, 2023. "Control and spread of contagion in networks with global effects," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 25(6), pages 1149-1187, December.
    7. Dena Yadin & Inbal Yahav & Lior Zalmanson & Nira Munichor, 2024. "Resolving the Ethical Tension Between Creating a Civil Environment and Facilitating Free Expression Online: Comment Reordering as an Alternative to Comment Moderation," Journal of Business Ethics, Springer, vol. 192(2), pages 261-283, June.
    8. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    9. Xia, Huosong & Wang, Yuan & Zhang, Justin Zuopeng & Zheng, Leven J. & Kamal, Muhammad Mustafa & Arya, Varsha, 2023. "COVID-19 fake news detection: A hybrid CNN-BiLSTM-AM model," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    10. Xu, Yuxin & Gao, Fei, 2024. "A novel higher-order Deffuant–Weisbuch networks model incorporating the Susceptible Infected Recovered framework," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    11. Li, WenYao & Xue, Xiaoyu & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Competing spreading dynamics in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    12. Csaba Both & Nima Dehmamy & Rose Yu & Albert-László Barabási, 2023. "Accelerating network layouts using graph neural networks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Howell, Bronwyn E. & Potgieter, Petrus H., 2023. "AI-generated lemons: a sour outlook for content producers?," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 277971, International Telecommunications Society (ITS).
    14. Wentao Xu & Kazutoshi Sasahara, 2022. "Characterizing the roles of bots on Twitter during the COVID-19 infodemic," Journal of Computational Social Science, Springer, vol. 5(1), pages 591-609, May.
    15. John Higgins & Tarun Sabarwal, 2021. "Control and Spread of Contagion in Networks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202111, University of Kansas, Department of Economics.
    16. Tracey L. O’Sullivan & Karen P. Phillips, 2019. "From SARS to pandemic influenza: the framing of high-risk populations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(1), pages 103-117, August.
    17. Andrey Dmitriev & Victor Dmitriev & Stepan Balybin, 2019. "Self-Organized Criticality on Twitter: Phenomenological Theory and Empirical Investigation Based on Data Analysis Results," Complexity, Hindawi, vol. 2019, pages 1-16, December.
    18. Jayles, Bertrand & Escobedo, Ramon & Cezera, Stéphane & Blanchet, Adrien & Kameda, Tatsuya & Sire, Clément & Théraulaz, Guy, 2020. "The impact of incorrect social information on collective wisdom in human groups," IAST Working Papers 20-106, Institute for Advanced Study in Toulouse (IAST).
    19. Vibha Sharma & Fatema Sultana & Sohaib Alam & Sameena Banu, 2024. "Trolling as a Disruptive Tool for Human Rights Violations: An Exploration of the Challenges Faced by Performance Artists," World Journal of English Language, Sciedu Press, vol. 14(4), pages 411-411, July.
    20. Lynnette Hui Xian Ng & Ian Kloo & Samantha Clark & Kathleen M. Carley, 2024. "An exploratory analysis of COVID bot vs human disinformation dissemination stemming from the Disinformation Dozen on Telegram," Journal of Computational Social Science, Springer, vol. 7(1), pages 695-720, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:5:y:2019:i:1:d:10.1057_s41599-019-0359-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.