IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v5y2022i1d10.1007_s42001-021-00139-3.html
   My bibliography  Save this article

Characterizing the roles of bots on Twitter during the COVID-19 infodemic

Author

Listed:
  • Wentao Xu

    (Nagoya University)

  • Kazutoshi Sasahara

    (Tokyo Institute of Technology)

Abstract

An infodemic is an emerging phenomenon caused by an overabundance of information online. This proliferation of information makes it difficult for the public to distinguish trustworthy news and credible information from untrustworthy sites and non-credible sources. The perils of an infodemic debuted with the outbreak of the COVID-19 pandemic and bots (i.e., automated accounts controlled by a set of algorithms) that are suspected of spreading the infodemic. Although previous research has revealed that bots played a central role in spreading misinformation during major political events, how bots behavior during the infodemic is unclear. In this paper, we examined the roles of bots in the case of the COVID-19 infodemic and the diffusion of non-credible information such as “5G” and “Bill Gates” conspiracy theories and content related to “Trump” and “WHO” by analyzing retweet networks and retweeted items. We show the segregated topology of their retweet networks, which indicates that right-wing self-media accounts and conspiracy theorists may lead to this opinion cleavage, while malicious bots might favor amplification of the diffusion of non-credible information. Although the basic influence of information diffusion could be larger in human users than bots, the effects of bots are non-negligible under an infodemic situation.

Suggested Citation

  • Wentao Xu & Kazutoshi Sasahara, 2022. "Characterizing the roles of bots on Twitter during the COVID-19 infodemic," Journal of Computational Social Science, Springer, vol. 5(1), pages 591-609, May.
  • Handle: RePEc:spr:jcsosc:v:5:y:2022:i:1:d:10.1007_s42001-021-00139-3
    DOI: 10.1007/s42001-021-00139-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-021-00139-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-021-00139-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kazutoshi Sasahara, 2019. "You are what you eat," Journal of Computational Social Science, Springer, vol. 2(2), pages 103-117, July.
    2. Joshua Uyheng & Kathleen M. Carley, 2020. "Bots and online hate during the COVID-19 pandemic: case studies in the United States and the Philippines," Journal of Computational Social Science, Springer, vol. 3(2), pages 445-468, November.
    3. Chengcheng Shao & Giovanni Luca Ciampaglia & Onur Varol & Kai-Cheng Yang & Alessandro Flammini & Filippo Menczer, 2018. "The spread of low-credibility content by social bots," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zixuan Weng & Aijun Lin, 2022. "Public Opinion Manipulation on Social Media: Social Network Analysis of Twitter Bots during the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    2. Ali Unlu & Sophie Truong & Nitin Sawhney & Jonas Sivelä & Tuukka Tammi, 2024. "Long-term assessment of social amplification of risk during COVID-19: challenges to public health agencies amid misinformation and vaccine stance," Journal of Computational Social Science, Springer, vol. 7(1), pages 809-836, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zixuan Weng & Aijun Lin, 2022. "Public Opinion Manipulation on Social Media: Social Network Analysis of Twitter Bots during the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    2. Kai-Cheng Yang & Emilio Ferrara & Filippo Menczer, 2022. "Botometer 101: social bot practicum for computational social scientists," Journal of Computational Social Science, Springer, vol. 5(2), pages 1511-1528, November.
    3. Xia, Huosong & Wang, Yuan & Zhang, Justin Zuopeng & Zheng, Leven J. & Kamal, Muhammad Mustafa & Arya, Varsha, 2023. "COVID-19 fake news detection: A hybrid CNN-BiLSTM-AM model," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    4. Howell, Bronwyn E. & Potgieter, Petrus H., 2023. "AI-generated lemons: a sour outlook for content producers?," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 277971, International Telecommunications Society (ITS).
    5. Francesca Bolla Tripodi, 2022. "ReOpen demands as public health threat: a sociotechnical framework for understanding the stickiness of misinformation," Computational and Mathematical Organization Theory, Springer, vol. 28(4), pages 321-334, December.
    6. Emilio Ferrara & Stefano Cresci & Luca Luceri, 2020. "Misinformation, manipulation, and abuse on social media in the era of COVID-19," Journal of Computational Social Science, Springer, vol. 3(2), pages 271-277, November.
    7. Vibha Sharma & Fatema Sultana & Sohaib Alam & Sameena Banu, 2024. "Trolling as a Disruptive Tool for Human Rights Violations: An Exploration of the Challenges Faced by Performance Artists," World Journal of English Language, Sciedu Press, vol. 14(4), pages 411-411, July.
    8. Wenkai Zhou & Chi Zhang & Linwan Wu & Meghana Shashidhar, 2023. "ChatGPT and marketing: Analyzing public discourse in early Twitter posts," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 693-706, December.
    9. Joshua Uyheng & Kathleen M. Carley, 2020. "Bots and online hate during the COVID-19 pandemic: case studies in the United States and the Philippines," Journal of Computational Social Science, Springer, vol. 3(2), pages 445-468, November.
    10. Junhui Cai & Dan Yang & Wu Zhu & Haipeng Shen & Linda Zhao, 2021. "Network regression and supervised centrality estimation," Papers 2111.12921, arXiv.org.
    11. Yevgeniy Golovchenko, 2020. "Measuring the scope of pro-Kremlin disinformation on Twitter," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-11, December.
    12. Samuel F Rosenblatt & Jeffrey A Smith & G Robin Gauthier & Laurent Hébert-Dufresne, 2020. "Immunization strategies in networks with missing data," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-21, July.
    13. Hugo Queiroz Abonizio & Janaina Ignacio de Morais & Gabriel Marques Tavares & Sylvio Barbon Junior, 2020. "Language-Independent Fake News Detection: English, Portuguese, and Spanish Mutual Features," Future Internet, MDPI, vol. 12(5), pages 1-18, May.
    14. Matilde Giaccherini & Joanna Kopinska & Gabriele Rovigatti, 2022. "Vax Populi: The Social Costs of Online Vaccine Skepticism," CESifo Working Paper Series 10184, CESifo.
    15. Hyehyun Hong & Hyun Jee Oh, 2020. "Utilizing Bots for Sustainable News Business: Understanding Users’ Perspectives of News Bots in the Age of Social Media," Sustainability, MDPI, vol. 12(16), pages 1-16, August.
    16. Wu, Yue & Li, Wenjia & Li, Yixiao & Chen, Qi & Liu, Mingyu & Li, Yuehui, 2024. "Alleviating negative group polarization with the aid of social bots," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 644(C).
    17. Min, Yong & Zhou, Yuying & Liu, Yuhang & Zhang, Jian & Xuan, Qi & Jin, Xiaogang & Cai, He, 2021. "The role of degree correlation in shaping filter bubbles in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    18. Andrea Moscadelli & Giuseppe Albora & Massimiliano Alberto Biamonte & Duccio Giorgetti & Michele Innocenzio & Sonia Paoli & Chiara Lorini & Paolo Bonanni & Guglielmo Bonaccorsi, 2020. "Fake News and Covid-19 in Italy: Results of a Quantitative Observational Study," IJERPH, MDPI, vol. 17(16), pages 1-13, August.
    19. Moena Hashimoto & Yotaro Takazawa & Kazutoshi Sasahara, 2024. "Are meat alternatives a moral concern? A comparison of English and Japanese tweets," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    20. Menghan Zhang & Xue Qi & Ze Chen & Jun Liu, 2022. "Social Bots’ Involvement in the COVID-19 Vaccine Discussions on Twitter," IJERPH, MDPI, vol. 19(3), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:5:y:2022:i:1:d:10.1007_s42001-021-00139-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.