IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924003308.html
   My bibliography  Save this article

A novel higher-order Deffuant–Weisbuch networks model incorporating the Susceptible Infected Recovered framework

Author

Listed:
  • Xu, Yuxin
  • Gao, Fei

Abstract

The literature on opinion dynamics lacks consideration of the changing states of nodes during the process of opinion interaction, as observed in the literature on social networks. To address this gap, this paper proposes an adapted three-dimensional Deffuant–Weisbuch model based on the Susceptible Infected Recovered (SIR) model, which explores the impact of node state changes on opinion interaction. We incorporate the SIR model to describe changes in node state and improve the trust threshold by taking into account nodes’ emotional factor, cognitive ability, and state of the arts. The model is also modified using the opinion natural evolution coefficient and accounts for dynamic changes in social network structure. We validate our model with different network types and structures, and verify our results using the Louvain algorithm and index of centrality. Our model reveals that under different network types and structures, multiple opinion cliques are formed, and the opinions of ordinary nodes tend to converge around those of opinion leaders, indicating the guiding role of opinion leaders in shaping public opinion.

Suggested Citation

  • Xu, Yuxin & Gao, Fei, 2024. "A novel higher-order Deffuant–Weisbuch networks model incorporating the Susceptible Infected Recovered framework," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003308
    DOI: 10.1016/j.chaos.2024.114778
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924003308
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114778?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernando P. Santos & Francisco C. Santos & Jorge M. Pacheco, 2018. "Social norm complexity and past reputations in the evolution of cooperation," Nature, Nature, vol. 555(7695), pages 242-245, March.
    2. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
    3. Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
    4. Jalili, Mahdi, 2013. "Social power and opinion formation in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 959-966.
    5. Luo, Yun & Li, Yuke & Sun, Chudi & Cheng, Chun, 2022. "Adapted Deffuant–Weisbuch model with implicit and explicit opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    6. F. Schweitzer & D. Garcia, 2010. "An agent-based model of collective emotions in online communities," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 77(4), pages 533-545, October.
    7. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    8. Bjarke Mønsted & Piotr Sapieżyński & Emilio Ferrara & Sune Lehmann, 2017. "Evidence of complex contagion of information in social media: An experiment using Twitter bots," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-12, September.
    9. Amblard, Frédéric & Deffuant, Guillaume, 2004. "The role of network topology on extremism propagation with the relative agreement opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 725-738.
    10. Renbin Xiao & Tongyang Yu & Jundong Hou, 2020. "Modeling and Simulation of Opinion Natural Reversal Dynamics with Opinion Leader Based on HK Bounded Confidence Model," Complexity, Hindawi, vol. 2020, pages 1-20, March.
    11. Gracia-Lázaro, Carlos & Dercole, Fabio & Moreno, Yamir, 2022. "Dynamics of economic unions: An agent-based model to investigate the economic and social drivers of withdrawals," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evangelos Ioannidis & Nikos Varsakelis & Ioannis Antoniou, 2020. "Promoters versus Adversaries of Change: Agent-Based Modeling of Organizational Conflict in Co-Evolving Networks," Mathematics, MDPI, vol. 8(12), pages 1-25, December.
    2. Yu, Xihong & Bao, Han & Chen, Mo & Bao, Bocheng, 2023. "Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    3. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.
    4. Shabani, Masoume & Wallin, Fredrik & Dahlquist, Erik & Yan, Jinyue, 2022. "Techno-economic assessment of battery storage integrated into a grid-connected and solar-powered residential building under different battery ageing models," Applied Energy, Elsevier, vol. 318(C).
    5. Yao, Qijia & Alsaade, Fawaz W. & Al-zahrani, Mohammed S. & Jahanshahi, Hadi, 2023. "Fixed-time neural control for output-constrained synchronization of second-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    6. Chaerusani, Virdi & Ramli, Yusrin & Zahra, Aghietyas Choirun Az & Zhang, Pan & Rizkiana, Jenny & Kongparakul, Suwadee & Samart, Chanatip & Karnjanakom, Surachai & Kang, Dong-Jin & Abudula, Abuliti & G, 2024. "In-situ catalytic upgrading of bio-oils from rapid pyrolysis of torrefied giant miscanthus (Miscanthus x giganteus) over copper‑magnesium bimetal modified HZSM-5," Applied Energy, Elsevier, vol. 353(PA).
    7. Tian, Di & Qu, Zhiguo & Zhang, Jianfei, 2023. "Electrochemical condition optimization and techno-economic analysis on the direct CO2 electroreduction of flue gas," Applied Energy, Elsevier, vol. 351(C).
    8. Li, Zhengmao & Wu, Lei & Xu, Yan & Wang, Luhao & Yang, Nan, 2023. "Distributed tri-layer risk-averse stochastic game approach for energy trading among multi-energy microgrids," Applied Energy, Elsevier, vol. 331(C).
    9. Qiu, Dawei & Wang, Yi & Zhang, Tingqi & Sun, Mingyang & Strbac, Goran, 2023. "Hierarchical multi-agent reinforcement learning for repair crews dispatch control towards multi-energy microgrid resilience," Applied Energy, Elsevier, vol. 336(C).
    10. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Peer-to-Peer trading with Demand Response using proposed smart bidding strategy," Applied Energy, Elsevier, vol. 327(C).
    11. Wei, Dongmei & Liu, Hailing & Li, Yongmei & Wan, Linchun & Qin, Sujuan & Wen, Qiaoyan & Gao, Fei, 2024. "Non-Markovian dynamics of time-fractional open quantum systems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    12. Huang, Changwei & Bian, Huanyu & Han, Wenchen, 2024. "Breaking the symmetry neutralizes the extremization under the repulsion and higher order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    13. Han, Wenchen & Feng, Yuee & Qian, Xiaolan & Yang, Qihui & Huang, Changwei, 2020. "Clusters and the entropy in opinion dynamics on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    14. Yu, Chuanjin & Li, Yongle & Chen, Qian & Lai, Xiaopan & Zhao, Liyang, 2022. "Matrix-based wavelet transformation embedded in recurrent neural networks for wind speed prediction," Applied Energy, Elsevier, vol. 324(C).
    15. Li, Fuxiang & Wu, Wei, 2022. "Coupled electrical-thermal performance estimation of photovoltaic devices: A transient multiphysics framework with robust parameter extraction and 3-D thermal analysis," Applied Energy, Elsevier, vol. 319(C).
    16. Fu, Jianqin & Wang, Huailin & Sun, Xilei & Bao, Huanhuan & Wang, Xun & Liu, Jingping, 2024. "Multi-objective optimization for impeller structure parameters of fuel cell air compressor using linear-based boosting model and reference vector guided evolutionary algorithm," Applied Energy, Elsevier, vol. 363(C).
    17. Ullah, Farman & Lee, Sungchang, 2017. "Identification of influential nodes based on temporal-aware modeling of multi-hop neighbor interactions for influence spread maximization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 968-985.
    18. Fan, Rui & Xu, Ke & Zhao, Jichang, 2018. "An agent-based model for emotion contagion and competition in online social media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 245-259.
    19. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    20. Qian, Jiaxin & Wu, Jiahui & Yao, Lei & Mahmut, Saniye & Zhang, Qiang, 2021. "Comprehensive performance evaluation of Wind-Solar-CCHP system based on emergy analysis and multi-objective decision method," Energy, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.