IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v58y2007i4d10.1057_palgrave.jors.2602168.html
   My bibliography  Save this article

A compact mean-variance-skewness model for large-scale portfolio optimization and its application to the NYSE market

Author

Listed:
  • H S Ryoo

    (Korea University)

Abstract

This paper develops a portfolio optimization model that uses the first three moments of the distribution of the rate of return on investment in selecting portfolios. An alternative measure of skewness is designed for the purpose, and, in the grand scheme of compact factorization, the proposed model is transformed to an equivalent quadratic program with a quadratic constraint with 2 T nonlinear variables and terms, where usually T⩽50. Extensive computational results are obtained on a real-world dataset of the returns of about 3500 stocks that were traded in the NYSE from 3 January to 17 September 2002. In summary, the portfolios built by the proposed model gave the average return on investment of 66.85% over the course of 150 trading days, a period in time when US economy and stock markets suffered tremendously after the tragic events of September 2001.

Suggested Citation

  • H S Ryoo, 2007. "A compact mean-variance-skewness model for large-scale portfolio optimization and its application to the NYSE market," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 505-515, April.
  • Handle: RePEc:pal:jorsoc:v:58:y:2007:i:4:d:10.1057_palgrave.jors.2602168
    DOI: 10.1057/palgrave.jors.2602168
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602168
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raj Aggarwal & Ramesh P. Rao & Takato Hiraki, 1989. "Skewness And Kurtosis In Japanese Equity Returns: Empirical Evidence," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 12(3), pages 253-260, September.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. Andre F. Perold, 1984. "Large-Scale Portfolio Optimization," Management Science, INFORMS, vol. 30(10), pages 1143-1160, October.
    4. Yusif Simaan, 1997. "Estimation Risk in Portfolio Selection: The Mean Variance Model Versus the Mean Absolute Deviation Model," Management Science, INFORMS, vol. 43(10), pages 1437-1446, October.
    5. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    6. F Ghasemzadeh & N Archer & P Iyogun, 1999. "A zero-one model for project portfolio selection and scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(7), pages 745-755, July.
    7. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung-Han Hsieh & Jie-Ling Lu, 2024. "On Accelerating Large-Scale Robust Portfolio Optimization," Papers 2408.07879, arXiv.org.
    2. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    3. Kerstens, Kristiaan & Mounir, Amine & Van de Woestyne, Ignace, 2011. "Geometric representation of the mean-variance-skewness portfolio frontier based upon the shortage function," European Journal of Operational Research, Elsevier, vol. 210(1), pages 81-94, April.
    4. Filippo Regina Mauro Gianfranco Bisceglia, 2020. "A-KA Model: an Optimization of the Stock’s Portofolio," Zagreb International Review of Economics and Business, Faculty of Economics and Business, University of Zagreb, vol. 23(2), pages 21-40, November.
    5. Younes Berouaga & Cherif El Msiyah & Jaouad Madkour, 2023. "Portfolio Optimization Using Minimum Spanning Tree Model in the Moroccan Stock Exchange Market," IJFS, MDPI, vol. 11(2), pages 1-20, March.
    6. J. Baixauli-Soler & Eva Alfaro-Cid & Matilde Fernandez-Blanco, 2011. "Mean-VaR Portfolio Selection Under Real Constraints," Computational Economics, Springer;Society for Computational Economics, vol. 37(2), pages 113-131, February.
    7. Emmanuel Jurczenko & Bertrand Maillet & Paul Merlin, 2008. "Efficient Frontier for Robust Higher-order Moment Portfolio Selection," Post-Print halshs-00336475, HAL.
    8. Li, Xiang & Qin, Zhongfeng, 2014. "Interval portfolio selection models within the framework of uncertainty theory," Economic Modelling, Elsevier, vol. 41(C), pages 338-344.
    9. Paweł Wnuk Lipinski, 2013. "Portfolio selection models based on characteristics of return distributions," Working Papers 2013-14, Faculty of Economic Sciences, University of Warsaw.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leung, Pui-Lam & Ng, Hon-Yip & Wong, Wing-Keung, 2012. "An improved estimation to make Markowitz’s portfolio optimization theory users friendly and estimation accurate with application on the US stock market investment," European Journal of Operational Research, Elsevier, vol. 222(1), pages 85-95.
    2. Bai, Zhidong & Liu, Huixia & Wong, Wing-Keung, 2016. "Making Markowitz's Portfolio Optimization Theory Practically Useful," MPRA Paper 74360, University Library of Munich, Germany.
    3. Bai, Zhidong & Li, Hua & Wong, Wing-Keung, 2013. "The best estimation for high-dimensional Markowitz mean-variance optimization," MPRA Paper 43862, University Library of Munich, Germany.
    4. Li, Bo & Zhang, Ranran, 2021. "A new mean-variance-entropy model for uncertain portfolio optimization with liquidity and diversification," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    5. Sabastine Mushori & Delson Chikobvu, 2016. "A Stochastic Multi-stage Trading Cost model in optimal portfolio selection," EERI Research Paper Series EERI RP 2016/23, Economics and Econometrics Research Institute (EERI), Brussels.
    6. Walter Murray & Howard Shek, 2012. "A local relaxation method for the cardinality constrained portfolio optimization problem," Computational Optimization and Applications, Springer, vol. 53(3), pages 681-709, December.
    7. Madlener, Reinhard & Glensk, Barbara & Weber, Veronika, 2011. "Fuzzy Portfolio Optimization of Onshore Wind Power Plants," FCN Working Papers 10/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Jul 2014.
    8. Jing-Rung Yu & Wan-Jiun Paul Chiou & Jian-Hong Yang, 2017. "Diversification benefits of risk portfolio models: a case of Taiwan’s stock market," Review of Quantitative Finance and Accounting, Springer, vol. 48(2), pages 467-502, February.
    9. Fang, Yong & Lai, K.K. & Wang, Shou-Yang, 2006. "Portfolio rebalancing model with transaction costs based on fuzzy decision theory," European Journal of Operational Research, Elsevier, vol. 175(2), pages 879-893, December.
    10. Li, Hua & Bai, Zhidong & Wong, Wing-Keung & McAleer, Michael, 2022. "Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization," Econometrics and Statistics, Elsevier, vol. 24(C), pages 133-150.
    11. Yu, Jing-Rung & Paul Chiou, Wan-Jiun & Hsin, Yi-Ting & Sheu, Her-Jiun, 2022. "Omega portfolio models with floating return threshold," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 743-758.
    12. Arenas Parra, M. & Bilbao Terol, A. & Rodriguez Uria, M. V., 2001. "A fuzzy goal programming approach to portfolio selection," European Journal of Operational Research, Elsevier, vol. 133(2), pages 287-297, January.
    13. Massol, Olivier & Banal-Estañol, Albert, 2014. "Export diversification through resource-based industrialization: The case of natural gas," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1067-1082.
    14. Buckley, Winston S. & Brown, Garfield O. & Marshall, Mario, 2012. "A mispricing model of stocks under asymmetric information," European Journal of Operational Research, Elsevier, vol. 221(3), pages 584-592.
    15. Barak, Sasan & Abessi, Masoud & Modarres, Mohammad, 2013. "Fuzzy turnover rate chance constraints portfolio model," European Journal of Operational Research, Elsevier, vol. 228(1), pages 141-147.
    16. Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.
    17. Kondor, Imre & Pafka, Szilard & Nagy, Gabor, 2007. "Noise sensitivity of portfolio selection under various risk measures," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1545-1573, May.
    18. Benati, Stefano, 2003. "The optimal portfolio problem with coherent risk measure constraints," European Journal of Operational Research, Elsevier, vol. 150(3), pages 572-584, November.
    19. Crama, Y. & Schyns, M., 2003. "Simulated annealing for complex portfolio selection problems," European Journal of Operational Research, Elsevier, vol. 150(3), pages 546-571, November.
    20. Paolo Laureti & Matus Medo & Yi-Cheng Zhang, 2010. "Analysis of Kelly-optimal portfolios," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 689-697.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:58:y:2007:i:4:d:10.1057_palgrave.jors.2602168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.