IDEAS home Printed from https://ideas.repec.org/a/pal/jmarka/v12y2024i3d10.1057_s41270-023-00217-7.html
   My bibliography  Save this article

Machine learning for product choice prediction

Author

Listed:
  • Josué Martínez-Garmendia

    (Columbia University
    University of California Berkeley)

Abstract

The goal of this paper is to provide a point of empirical evidence as to how machine-learning techniques stack-up in their ability to predict consumer choices relative to traditional statistical techniques. We compare a traditional (naïve) multinomial logit to six machine-learning alternatives: learning multinomial logit, random forests, neural networks, gradient boosting, support vector machines and an ensemble learning algorithm. The comparison is done by applying these methods to beer category stock keeping unit (SKU) level panel data. Results show that machine-learning techniques tend to perform better, but not always. Ensemble learning performs best while maintaining an overall high-performance level across all SKU classes, independently of their sample size. This result builds on existing evidence about the benefits of combining multiple prediction techniques over relying on a single best performing model, as conventional wisdom would intuitively make us believe. In general, the better performance of machine learning techniques at predicting product choice should not come as a surprise. At their core, machine learning techniques are designed to augment dimensionality of models and/or scan through orders of magnitude greater model alternatives, relative to the narrower focus of traditional approaches.

Suggested Citation

  • Josué Martínez-Garmendia, 2024. "Machine learning for product choice prediction," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(3), pages 656-667, September.
  • Handle: RePEc:pal:jmarka:v:12:y:2024:i:3:d:10.1057_s41270-023-00217-7
    DOI: 10.1057/s41270-023-00217-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41270-023-00217-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41270-023-00217-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fedor Iskhakov & John Rust & Bertel Schjerning, 2020. "Machine learning and structural econometrics: contrasts and synergies," The Econometrics Journal, Royal Economic Society, vol. 23(3), pages 81-124.
    2. Hema Yoganarasimhan, 2020. "Search Personalization Using Machine Learning," Management Science, INFORMS, vol. 66(3), pages 1045-1070, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tino Werner, 2023. "Quantitative robustness of instance ranking problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(2), pages 335-368, April.
    2. Omid Rafieian & Hema Yoganarasimhan, 2021. "Targeting and Privacy in Mobile Advertising," Marketing Science, INFORMS, vol. 40(2), pages 193-218, March.
    3. Bergemann, Dirk & Ottaviani, Marco, 2021. "Information Markets and Nonmarkets," CEPR Discussion Papers 16459, C.E.P.R. Discussion Papers.
    4. Cloarec, Julien, 2020. "The personalization–privacy paradox in the attention economy," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    5. Zhang, Ruchuan & Gao, Weiyan & Chen, Shanshan & Zhou, Li & Li, Aijun, 2024. "Dose digital transformation contribute to improving financing efficiency? Evidence and implications for energy enterprises in China," Energy, Elsevier, vol. 300(C).
    6. Schaefer, Maximilian & Sapi, Geza, 2023. "Complementarities in learning from data: Insights from general search," Information Economics and Policy, Elsevier, vol. 65(C).
    7. Omid Rafieian, 2023. "Optimizing User Engagement Through Adaptive Ad Sequencing," Marketing Science, INFORMS, vol. 42(5), pages 910-933, September.
    8. Hui Chen & Antoine Didisheim & Simon Scheidegger, 2021. "Deep Structural Estimation: With an Application to Option Pricing," Papers 2102.09209, arXiv.org.
    9. Dainis Zegners & Uwe Sunde & Anthony Strittmatter, 2020. "Decisions and Performance Under Bounded Rationality: A Computational Benchmarking Approach," CESifo Working Paper Series 8341, CESifo.
    10. Brei, Vinicius Andrade, 2020. "Machine Learning in Marketing: Overview, Learning Strategies, Applications, and Future Developments," Foundations and Trends(R) in Marketing, now publishers, vol. 14(3), pages 173-236, August.
    11. Ren, Xiyuan & Chow, Joseph Y.J., 2022. "A random-utility-consistent machine learning method to estimate agents’ joint activity scheduling choice from a ubiquitous data set," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 396-418.
    12. Lohmann, Paul M & Gsottbauer, Elisabeth & Farrington, James & Human, Steve & Reisch, Lucia A, 2024. "Choice architecture promotes sustainable choices in online food-delivery apps," LSE Research Online Documents on Economics 125835, London School of Economics and Political Science, LSE Library.
    13. Reuter-Oppermann, Melanie & Wolff, Clemens & Pumplun, Luisa, 2021. "Next Frontiers in Emergency Medical Services in Germany: Identifying Gaps between Academia and Practice," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 124665, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    14. Hema Yoganarasimhan & Ebrahim Barzegary & Abhishek Pani, 2020. "Design and Evaluation of Personalized Free Trials," Papers 2006.13420, arXiv.org.
    15. Ali Goli & Anja Lambrecht & Hema Yoganarasimhan, 2024. "A Bias Correction Approach for Interference in Ranking Experiments," Marketing Science, INFORMS, vol. 43(3), pages 590-614, May.
    16. Hanyao Gao & Gang Kou & Haiming Liang & Hengjie Zhang & Xiangrui Chao & Cong-Cong Li & Yucheng Dong, 2024. "Machine learning in business and finance: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-35, December.
    17. Shengjun Mao & Sanjeev Dewan & Yi-Jen (Ian) Ho, 2023. "Personalized Ranking at a Mobile App Distribution Platform," Information Systems Research, INFORMS, vol. 34(3), pages 811-827, September.
    18. Herhausen, Dennis & Bernritter, Stefan F. & Ngai, Eric W.T. & Kumar, Ajay & Delen, Dursun, 2024. "Machine learning in marketing: Recent progress and future research directions," Journal of Business Research, Elsevier, vol. 170(C).
    19. Florian Peiseler & Alexander Rasch & Shiva Shekhar, 2022. "Imperfect information, algorithmic price discrimination, and collusion," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(2), pages 516-549, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jmarka:v:12:y:2024:i:3:d:10.1057_s41270-023-00217-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.